浙江省杭州市萧山区五校联考2024届数学八上期末统考模拟试题含解析_第1页
浙江省杭州市萧山区五校联考2024届数学八上期末统考模拟试题含解析_第2页
浙江省杭州市萧山区五校联考2024届数学八上期末统考模拟试题含解析_第3页
浙江省杭州市萧山区五校联考2024届数学八上期末统考模拟试题含解析_第4页
浙江省杭州市萧山区五校联考2024届数学八上期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市萧山区五校联考2024届数学八上期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条图中的AB,CD两根木条,这样做是运用了三角形的A.全等性 B.灵活性 C.稳定性 D.对称性2.如图,在中,,D是AB上的点,过点D作

交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③ B.①②④ C.②③④ D.①②③④3.为你点赞,你是最棒的!下列四种表情图片都可以用来为你点赞!其中是轴对称图形的是()A. B. C. D.4.下列哪个点在第四象限()A. B. C. D.5.下列说法中正确的是()A.的值是±5 B.两个无理数的和仍是无理数C.-3没有立方根. D.是最简二次根式.6.点P的坐标是(2-a,3a+6),且点P到两坐标轴的距离相等,则点P坐标是()A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或7.下列各组数是勾股数的是()A.6,7,8 B.1,2,3 C.3,4,5 D.5,5,98.如图,△ABC中,∠A=40°,AB=AC,D、E、F分别是AB、BC、AC边上的点,且BD=CE,BE=CF,则∠DEF的度数是()A.75° B.70° C.65° D.60°9.已知点都在直线y=-3x+m上,则的大小关系是()A. B. C. D.10.若长度分别为的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.811.若是完全平方式,则m的值是()A.-1 B.7 C.7或-1 D.5或112.下列各式能用平方差公式计算的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为_____cm时,线段CQ+PQ的和为最小.14.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;15.实数P在数轴上的位置如图所示,化简+=________.16.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2019BC与∠A2019CD的平分线相交于点A2020,得∠A2020,则∠A2020=_____.17.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么的值是____.18.在三角形纸片中,,,点(不与,重合)是上任意一点,将此三角形纸片按下列方式折叠,若的长度为,则的周长为__________.(用含的式子表示)三、解答题(共78分)19.(8分)计算.(1)(2).20.(8分)解不等式组:;并将解集在数轴上表示出来.21.(8分)(新知理解)如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.(解决问题)如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为cm;(拓展研究)如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)22.(10分)先化简,再求代数式的值,其中23.(10分)(1)计算:(2)若,求下列代数式的值:①;②.24.(10分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88________乙________81.1丙6________3(1)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.25.(12分)化简:26.先化简,再求值:,其中m=9.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】解:三角形具有稳定性,其他多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变,故这样做是运用了三角形的稳定性故选:C2、B【解题分析】由在△ABC中,∠ACB=90°,DE⊥AB,根据等角的余角相等,可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【题目详解】在△ABC中,∵∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°.∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD.∵AD=BD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°.∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选B.【题目点拨】本题考查了等腰三角形的性质与判定、等边三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解答此题的关键.3、A【分析】根据轴对称图形的定义逐项识别即可,在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫做轴对称图形.据此解答即可.【题目详解】A是轴对称图形,其余的不是轴对称图形.故选A.【题目点拨】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.4、C【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答即可.【题目详解】因为第四象限内的点横坐标为正,纵坐标为负,各选项只有C符合条件,故选:C.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【题目详解】,故A选项错误;,故B选项错误;-3的立方根为,故C选项错误;是最简二次根式,故D选项正确;故选D.【题目点拨】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.6、D【分析】由点P到两坐标轴的距离相等,建立绝对值方程再解方程即可得到答案.【题目详解】解:点P到两坐标轴的距离相等,或当时,当综上:的坐标为:或故选D.【题目点拨】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.7、C【分析】直接根据勾股数的概念进行排除选项即可.【题目详解】A、,故不符合题意;B、,故不符合题意;C、,故符合题意;D、,故不符合题意;故选C.【题目点拨】本题主要考查勾股数,熟练掌握勾股数的概念及勾股定理是解题的关键.8、B【分析】由等腰三角形的性质得出∠B=∠C=70°,再证明△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.【题目详解】解:∵AB=AC,

∴∠B=∠C=(180°-∠A)=70°,

在△BDE和△CEF中,,

∴△BDE≌△CEF(SAS),

∴∠BDE=∠CEF,

∵∠CED=∠B+∠BDE,

即∠CEF+∠DEF=∠B+∠BDE,

∴∠DEF=∠B=70°;

故选:B.【题目点拨】本题考查了等腰三角形的性质、全等三角形的判定与性质以及三角形的外角性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应角相等是解决问题的关键.9、A【分析】根据在y=-3x+m中,-3<0,则y随x的增大而减小,然后根据一次函数的增减性解答即可.【题目详解】∵直线中,∴y随x的增大而减小,又∵点都在直线上,且.∴y1>y2>y3故答案为A.【题目点拨】本题考查了一次函数的增减性,灵活运用一次函数的性质是正确解答本题的关键.10、C【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【题目详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【题目点拨】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.11、C【解题分析】试题分析:完全平方式的形式是a2±2ab+b2,本题首末两项是x和4这两个数的平方,那么中间一项应为±8x,所以2(m﹣3)=±8,即m=7或﹣1.故答案选C.考点:完全平方式.12、C【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【题目详解】A.相同字母的系数不同,不能用平方差公式计算;B.含y的项系数符号相反,但绝对值不同,不能用平方差公式计算;C.含y的项符号相同,含x的项符号相反,能用平方差公式计算;D.含x、y的项符号都相反,不能用平方差公式计算.故选:C.【题目点拨】本题考查了平方差公式,注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有,熟记公式结构是解答本题的关键.二、填空题(每题4分,共24分)13、1.【分析】连接AQ,依据等边三角形的性质,即可得到CQ=AQ,依据当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,即可得到BP的长.【题目详解】如图,连接AQ,∵等边△ABC中,BD为AC边上的中线,∴BD垂直平分AC,∴CQ=AQ,∴CQ+PQ=AQ+PQ,∴当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,此时,P为BC的中点,又∵等边△ABC的周长为18cm,∴BP=BC=×6=1cm,故答案为1.【题目点拨】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.14、AC=DF(或∠A=∠F或∠B=∠E)【解题分析】∵BD=CE,

∴BD-CD=CE-CD,

∴BC=DE,

①条件是AC=DF时,在△ABC和△FED中,∴△ABC≌△FED(SAS);②当∠A=∠F时,∴△ABC≌△FED(AAS);③当∠B=∠E时,∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).15、1【解题分析】根据图得:1<p<2,+=p-1+2-p=1.16、【分析】根据角平分线的定义以及三角形外角的性质,可知:∠A1=∠A,∠A2=∠A1=∠A,…,以此类推,即可得到答案.【题目详解】∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A1CD=∠A1+∠A1BC,即:∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD−∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD−∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知:∠A2020=∠A=.故答案为:.【题目点拨】本题主要考查三角形的外角的性质,以及角平分线的定义,掌握三角形的外角等于不相邻的内角的和,是解题的关键.17、1.【解题分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a-b)2=a2-2ab+b2即可求解.【题目详解】解:根据勾股定理可得a2+b2=13,

四个直角三角形的面积是:ab×4=13-1=12,即:2ab=12,

则(a-b)2=a2-2ab+b2=13-12=1.

故答案为:1.【题目点拨】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.18、6【分析】根据折叠的性质可得∠EDF=∠B=30°,∠EFB=∠EFD=90°,∠ACD=∠GDC=90°,然后根据三角形外角的性质和平角的定义即可求出∠GED、∠GDE,即可证出△EGD为等边三角形,从而得出EG=GD=ED,然后根据30°所对的直角边是斜边的一半即可求出ED,从而求出结论.【题目详解】解:由折叠的性质可知:∠EDF=∠B=30°,∠EFB=∠EFD=90°,∠ACD=∠GDC=90°∴∠GED=∠EDF+∠B=60°,∠GDE=180°-∠EDF-∠GDC=60°∴∠EGD=180°-∠GED-∠GDE=60°∴△EGD为等边三角形∴EG=GD=ED在Rt△EDF中,∠EDF=30°∴ED=2EF=2∴EG=GD=ED=2∴的周长为EG+GD+ED=6故答案为:6.【题目点拨】此题考查的是折叠的性质、等边三角形的判定及性质和直角三角形的性质,掌握折叠的性质、等边三角形的判定及性质和30°所对的直角边是斜边的一半是解决此题的关键.三、解答题(共78分)19、(1);(2)1【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质、立方根的性质分别化简得出答案.【题目详解】(1)原式=10﹣﹣6=;(2)原式=1﹣2+2=1.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.20、.数轴表示见解析【分析】先分别求出各不等式的解集,然后再确定其公共部分即为不等式组的解集,最后在数轴上表示出来即可.【题目详解】解:,由不等式①解得,,由不等式②解得,,所以,原不等式组的解集是.在数轴上表示如下:【题目点拨】本题考查了不等式组的解法,掌握解不等式和确定不等式组解集的方法是解答本题的关键.21、(1);(2)作图见解析.【解题分析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;

(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】

如图②,作点E关于AD的对称点F,连接PF,则PE=PF,

当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),

当CF⊥AB时,CF最短,此时BF=AB=3(cm),

∴Rt△BCF中,CF=(cm),

∴PC+PE的最小值为3cm;

(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论