安徽省宣城市中学2024届八年级数学第一学期期末考试试题含解析_第1页
安徽省宣城市中学2024届八年级数学第一学期期末考试试题含解析_第2页
安徽省宣城市中学2024届八年级数学第一学期期末考试试题含解析_第3页
安徽省宣城市中学2024届八年级数学第一学期期末考试试题含解析_第4页
安徽省宣城市中学2024届八年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宣城市中学2024届八年级数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在△ABC中,CB=AC,DE垂直平分AC,垂足为E,交BC于点D,若∠B=70°,则∠BAD=()A.30° B.40° C.50° D.60°2.下列各点在函数y=1-2x的图象上的是()A. B. C. D.3.一个三角形的三条边长分别为,则的值有可能是下列哪个数()A. B. C. D.4.下列各数中无理数是()A.5.3131131113 B. C. D.5.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.AAS6.把分解因式正确的是()A. B. C. D.7.已知一个等腰三角形两边长之比为1:4,周长为18,则这个等腰三角形底边长为()A.2 B.6 C.8 D.2或88.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.39.在边长为的正方形中挖掉一个边长为的小正方形(),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. B.C. D.10.在平面直角坐标系xOy中,A(1,3),B(5,1),点M在x轴上,当MA+MB取得最小值时,点M的坐标为()A.(5,0) B.(4,0) C.(1,0) D.(0,4)二、填空题(每小题3分,共24分)11.分解因式:__________.12.点,是直线上的两点,则_______0(填“>”或“<”).13.如图,四边形ABCD中,∠A=130°,∠D=100°.∠ABC和∠BCD的平分线交于点O,则∠O=_______度.14.若一个多边形的内角和是900º,则这个多边形是边形.15.如图:已知AB⊥BC,AE⊥DE,且AB=AE,∠ACD=∠ADC=50°,∠BAD=100°,则∠BAE=_________.16.若分式的值为0,则x的值等于________.17.分式化为最简分式的结果是__________________.18.若a﹣b=1,ab=2,那么a+b的值为_____.三、解答题(共66分)19.(10分)已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.20.(6分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,路板一尺离地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑话欢嬉,良工高师素好奇,算出索长有几?”翻译成现代文的大意是:如图.秋千静挂时,踏板离地的高度是尺,现在兑出两步(两步算作尺,故尺)的水平距离到的位置,有人记录踏板离地的高度为尺.仕女佳人争着荡秋千,一整天都欢声笑语,工匠师傅们好奇的是秋千绳索有多长呢﹖请你来解答工匠师傅们的困惑,求出秋千绳索的长度.21.(6分)如图,在中,是上的一点,若,,,,求的面积.22.(8分)如图,点A、、、在同一直线上,,AF∥DE,.求证:.23.(8分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.24.(8分)已知一次函数的表达式是y=(m-4)x+12-4m(m为常数,且m≠4)(1)当图像与x轴交于点(2,0)时,求m的值;(2)当图像与y轴的交点位于原点下方时,判断函数值y随着x的增大而变化的趋势;(3)在(2)的条件下,当函数值y随着自变量x的增大而减小时,求其中任意两条直线与y轴围成的三角形面积的取值范围.25.(10分)(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)26.(10分)如图,在中,,,,平分交于,求的度数.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【题目详解】解:∵CB=CA,∴∠B=∠BAC=70°,∴∠C=180°﹣70°﹣70°=40°.∵DE垂直平分AC,∴∠DAC=∠C=40°,∴∠BAD=30°.故选:A.【题目点拨】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.2、C【解题分析】把各点的横坐标代入所给函数解析式,看所得函数值是否和点的纵坐标相等即可.【题目详解】解:A、当x=0时,y=1-2×0=1≠2,不符合题意;B、当x=1时,y=1-2×1=-1≠0,不符合题意;C、当x=1时,y=1-2×1=-1,符合题意;D、当x=2时,y=1-2×2=-3≠-1,不符合题意.故选C.【题目点拨】本题考查了一次函数图象上点的坐标特征;用到的知识点为:一次函数解析式上点的横纵坐标适合该函数解析式.3、B【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,从而得出结果.【题目详解】解:根据题意得:7-4<x<7+4,

即3<x<11,

故选:B.【题目点拨】本题考查三角形的三边关系,关键是理解如何根据已知的两条边求第三边的范围.4、C【分析】根据无理数的定义对各选项进行逐一分析即可.【题目详解】解:A、5.3131131113是有限小数,属于有理数;B、是分数,属于有理数;C、,是无理数;D、=-3,是整数,属于有理数.故选C.【题目点拨】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5、B【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【题目详解】因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【题目点拨】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、D【分析】先提取公因式mn,再对余下的多项式利用完全平方公式继续分解.【题目详解】==.故选:D.【题目点拨】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式.7、A【分析】题中只给出了两边之比,没有明确说明哪个是底哪个是腰,所以应该分两种情况进行分析,再结合三角形三边的关系将不合题意的解舍去.【题目详解】因为两边长之比为1:4,所以设较短一边为x,则另一边为4x;(1)假设x为底边,4x为腰;则8x+x=18,x=1,即底边为1;(1)假设x为腰,4x为底边,则1x+4x=18,x=3,4x=11;∵3+3<11,∴该假设不成立.所以等腰三角形的底边为1.故选:A.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.8、B【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【题目详解】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【题目点拨】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.9、A【分析】在左图中,大正方形减小正方形剩下的部分面积为a2-b2;因为拼成的长方形的长为a+b,宽为a-b,根据“长方形的面积=长×宽”可得:(a+b)(a-b),因为面积相等,进而得出结论.【题目详解】解:由图可知,大正方形减小正方形剩下的部分面积为a2-b2;拼成的长方形的面积:(a+b)(a-b),∴.故选:A.【题目点拨】此题主要考查了平方差公式的几何背景,解题的关键是求出第一个图的阴影部分面积,进而根据长方形的面积计算公式求出拼成的长方形的面积,根据面积不变得出结论.10、B【分析】根据对称性,作点B关于x轴的对称点B′,连接AB′与x轴交于点M,根据两点之间线段最短,后求出的解析式即可得结论.【题目详解】解:如图所示:作点B关于x轴的对称点B′,连接AB′交x轴于点M,此时MA+MB=MA+MB′=AB′,根据两点之间线段最短,因为:B(5,1),所以:设直线为把代入函数解析式:解得:所以一次函数为:,所以点M的坐标为(4,0)故选:B.【题目点拨】本题考查了轴对称-最短路线问题,解决本题的关键是掌握对称性质.二、填空题(每小题3分,共24分)11、【解题分析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点,再利用平方差公式分解因式.a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.12、>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.【题目详解】解:∵直线的k<0,∴函数值y随x的增大而减小.∵点,是直线上的两点,-1<3,∴y1>y2,即故答案为:>.【题目点拨】本题考查一次函数图象上点的坐标特征。利用数形结合思想解题是关键.13、1【分析】先根据四边形内角和及题意求出∠ABC+∠DCB=130°,然后根据角平分线的定义及三角形内角和可求解.【题目详解】解:四边形ABCD中,∠A=130°,∠D=100°,,∠ABC和∠BCD的平分线交于点O,∠ABO=∠OBC,∠DCO=∠BCO,;故答案为1.【题目点拨】本题主要考查四边形内角和、三角形内角和及角平分线的定义,熟练掌握多边形内角和、三角形内角和及角平分线的定义是解题的关键.14、七【分析】根据多边形的内角和公式,列式求解即可.【题目详解】设这个多边形是边形,根据题意得,,解得.故答案为.【题目点拨】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15、120°【分析】先由题意求得∠CAD,再证明△ABC与△AED全等即可求解.【题目详解】解:∵∠ACD=∠ADC=50°,∴∠CAD=180°-50°-50°=80°,AC=AD,又AB⊥BC,AE⊥DE,∴∠B=∠E=90°,∵AB=AE,∴Rt△ABCRt△AED,∴∠BAC=∠EAD,∴∠BAE=∠BAC+∠CAD+∠EAD=2∠BAC+∠CAD,∵∠BAD=100°,∴∠BAC=∠BAD-∠CAD=20°,∴∠BAE=120°;故答案为:120°.【题目点拨】此题考查三角形全等及等腰三角形的性质,难度一般.16、.【分析】分式的值为零,分子等于零且分母不等于零.【题目详解】解:由题意可得解得:故答案为:.【题目点拨】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.17、【分析】根据被开方数不含分母;被开方数不含能开的尽方的因数或因式的二次根式为最简二次根式,进行化简即可。【题目详解】因为有意义,所以,所以【题目点拨】本题考查的是根式有意义的条件和最简二次根式的意义,能够判断出是解题的关键。18、±1.【分析】把a-b=1两边平方,利用完全平方公式化简,整理求出a2+b2的值,原式平方后利用完全平方公式化简,开方即可求出值.【题目详解】把a﹣b=1,两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把ab=2代入得:a2+b2=5,∴(a+b)2=a2+b2+2ab=9,则a+b=±1,故答案为:±1【题目点拨】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、解答题(共66分)19、见解析【分析】由于EF⊥AC,DB⊥AC得到EF∥DM,进而可证∠1=∠CDM,根据平行线的判定得到MN∥CD,再由∠3=∠C,可证AB//CD,然后根据平行线的判定即可得到AB∥MN.【题目详解】证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∵∠3=∠C,∴AB//CD,∴AB∥MN.【题目点拨】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.20、秋千绳索长14.1尺【分析】设秋千绳索长为x,由题意易得OA=OB,BD=1,则AE=4,进而OE=x-4,最后根据勾股定理可进行求解.【题目详解】解:设秋千绳索长为x,由题意得OA=OB=x,BD=1,△OEB是直角三角形,AC=1,AE=4,OE=x-4,,在Rt△OEB中,,即解得:,OA=14.1.答:秋千绳索长14.1尺.【题目点拨】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.21、1【分析】先根据,,,利用勾股定理的逆定理求证是直角三角形,再利用勾股定理求出的长,然后利用三角形面积公式即可得出答案.【题目详解】解:,是直角三角形,,在中,,,.因此的面积为1.故答案为1.【题目点拨】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证是直角三角形.22、详见解析.【分析】先根据平行线的性质求出∠A=∠D,再利用线段的加减证得AB=DC,即可用“SAS”证明三角形全等.【题目详解】∵AF∥DE∴∠A=∠D∵AC=DB∴AC-DB=DB-BC即AB=DC在△ABF和△DCE中,∵∴△ABF≌△DCE【题目点拨】本题考查的是三角形全等的判定,掌握三角形的各个判定定理是关键.23、(1)证明见解析;(2)证明见解析;(3)BG=CE.证明见解析.【分析】(1)证明△BDF≌△CDA,得到BF=AC;(2)由(1)问可知AC=BF,所以CE=AE=BF;(3)BG=CG,CG在△EGC中,CE<CG.【题目详解】解:(1)证明:因为CD⊥AB,∠ABC=45°,所以△BCD是等腰直角三角形.所以BD=CD.在Rt△DFB和Rt△DAC中,因为∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,又∠BFD=∠EFC,所以∠DBF=∠DCA.又因为∠BDF=∠CDA=90°,BD=CD,.所以Rt△DFB≌Rt△DAC.所以BF=AC.(2)证明:在Rt△BEA和Rt△BEC中,因为BE平分∠ABC,所以∠ABE=∠CBE.又因为BE=BE,∠BEA=∠BEC=90°,所以Rt△BEA≌Rt△BEC.所以CE=AE=AC.又由(1),知BF=AC,所以CE=AC=BF.(3)BG=CE.证明:连接CG,因为△BCD是等腰直角三角形,所以BD=CD,又H是BC边的中点,所以DH垂直平分BC.所以BG=CG,在Rt△CEG中,∠GCE=45°,所以BG=CG=CE.【题目点拨】本题考查了全等三角形的证明方法,熟练掌握全等的证明方法是本题的解题关键.24、(1);(2)当时,函数值y随着自变量x的增大而减小;当时,函数值y随着自变量x的增大而增大;(3)【分析】(1)把(2,0)代入解析式即可求解;(2)先求出直线与y轴交点为(0,12-4m),故可得到不等式,再根据一次函数的性质即可额求解;(3)先判断函数图像恒过点(4,-4),再根据函数图像求得两条直线形成的面积最大为,故可求解.【题目详解】(1)∵一次函数经过点(2,0)∴解得(2)∵图像与y轴交点位于原点下方,且与y轴交点为(0,12-4m)∴,解得∴∴当,即时,函数值y随着自变量x的增大而减小;当,即时,函数值y随着自变量x的增大而增大.(3)∵函数值y随着自变量x的增大而减小,∴∵∴函数图像恒过点(4,-4)由函数图像可知,当时,,当时,,此时两条直线形成的面积最大为;当两条直线相同时,形成的面积为,故任意两条直线与y轴形成的三角形面积的取值范围为.【题目点拨】此题主要考查一次函数与几何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论