版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广州市从化区从化七中学年度2024届八年级数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列运算正确的是A. B. C. D.2.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=.已知△ABC的三边长分别为1,2,,则△ABC的面积为().A.1 B. C. D.3.如下图,点是的中点,,,平分,下列结论:①②③④四个结论中成立的是()A.①②④ B.①②③ C.②③④ D.①③④4.如图,是等边三角形,是中线,延长到点,使,连结,下面给出的四个结论:①,②平分,③,④,其中正确的个数是()A.1个 B.2个 C.3个 D.4个5.一个多边形的内角和是外角和的2倍,则这个多边形对角线的条数是()A.6 B.9 C.12 D.186.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为()A. B.C. D.7.下列命题是假命题的是().A.同旁内角互补,两直线平行B.线段垂直平分线上的点到线段两个端点的距离相等C.相等的角是对顶角D.角是轴对称图形8.如图,已知,点,,,在射线上,点,,,在射线上,,,,均为等边三角形.若,则的边长为()A. B. C. D.9.如图,直线经过点,则关于的不等式的解集是()A.x>2 B.x<2 C.x≥2 D.x≤210.下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.一次函数y=kx+b的图象如图所示,则不等式0≤kx+b<5的解集为.12.已知,那么以边边长的直角三角形的面积为__________.13.如图,边长为12的等边三角形ABC中,E是高AD上的一个动点,连结CE,将线段CE绕点C逆时针旋转60°得到CF,连结DF.则在点E运动过程中,线段DF长度的最小值是__________.14.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为_____.15.如图,点O为等腰三角形ABC底边BC的中点,,,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.16.一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.17.如果把人的头顶和脚底分别看作一个点,把地球赤道看作一个圆,那么身高2m的小赵沿着赤道环行一周,他的头顶比脚底多行_____m.18.分解因式:3x3y﹣6x2y+3xy=_____.三、解答题(共66分)19.(10分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.20.(6分)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a),l1与y轴交于点C,l2与x轴交于点A.(1)求a的值及直线l1的解析式.(2)求四边形PAOC的面积.(3)在x轴上方有一动直线平行于x轴,分别与l1,l2交于点M,N,且点M在点N的右侧,x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.21.(6分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.22.(8分)如图,平分交于,交于,.(1)求证:;(2).23.(8分)如图,已知AB=DC,AC=BD,求证:∠B=∠C.24.(8分)先化简,再求值:2a-,其中a=小刚的解法如下:2a-=2a-=2a-(a-2)=2a-a+2=a+2,当a=时,2a-=+2小刚的解法对吗?若不对,请改正.25.(10分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.26.(10分)若3a=6,9b=2,求32a+4b的值;(2)已知xy=8,x﹣y=2,求代数式x3y﹣x2y2+xy3的值.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】选项A,选项B,,错误;选项C,,错误;选项D,,错误.故选A.2、A【分析】根据材料中公式将1,2,代入计算即可.【题目详解】解:∵△ABC的三边长分别为1,2,,∴S△ABC==1故选A.【题目点拨】此题考查的是根据材料中的公式计算三角形的面积,掌握三斜求积公式是解决此题的关键.3、A【解题分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【题目详解】过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠ADE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【题目点拨】此题考查角平分线的性质,全等三角形的判定与性质,解题关键在于掌握判定定理.4、D【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有:AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【题目详解】∵△ABC是等边三角形,BD是AC上的中线,
∴∠ADB=∠CDB=90°,BD平分∠ABC;
∴BD⊥AC;
∵∠ACB=∠CDE+∠DEC=60°,
又CD=CE,
∴∠CDE=∠DEC=30°,
∴∠CBD=∠DEC,
∴DB=DE.
∠BDE=∠CDB+∠CDE=120°
所以这四项都是正确的.
故选:D.【题目点拨】此题考查等边三角形的性质,等腰三角形的性质等知识,注意三线合一这一性质的理解与运用.5、B【分析】根据多边形的内角和是360°即可求得多边形的内角和,然后根据多边形的内角和求得边数,进而求得对角线的条数.【题目详解】设这个多边形有条边,由题意,得解得∴这个多边形的对角线的条数是故选:B.【题目点拨】此题比较简单,只要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6、B【分析】设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【题目详解】解:设大马有匹,小马有匹,由题意得:,故选:B.【题目点拨】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.7、C【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案.【题目详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,故D正确故选:C.【题目点拨】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解.8、B【分析】根据等腰三角形的性质以及平行线的性质得出以及,得出进而得出答案.【题目详解】解:∵是等边三角形,∴∵∠O=30°,∴,∵,∴,∴在中,∵∴,同法可得∴的边长为:,故选:B.【题目点拨】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出,得出进而发现规律是解题关键.9、D【分析】写出函数图象在x轴上方及x轴上所对应的自变量的范围即可.【题目详解】解:当x≤2时,y≥1.所以关于x的不等式kx+3≥1的解集是x≤2.故选D.【题目点拨】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10、D【分析】轴对称图形的概念是:某一图形沿一直线折叠后的两部分能够完全重合,这样的图形是轴对称图形,根据这一概念对各选分析判断,利用排除法求解即可.【题目详解】A.不是轴对称图形,所以本选项错误;B.不是轴对称图形,所以本选项错误;C.不是轴对称图形,所以本选项错误;D.是轴对称图形,所以本选项正确.故选D【题目点拨】本题考查的知识点是轴对称图形的概念,利用轴对称图形的特点是“对折后两部分能够完全重合”逐条进行对比排除是关键.二、填空题(每小题3分,共24分)11、0<x≤1.【分析】从图象上得到直线与坐标轴的交点坐标,再根据函数的增减性,可以得出不等式0≤kx+b<5的解集.【题目详解】函数y=kx+b的图象如图所示,函数经过点(1,0),(0,5),且函数值y随x的增大而减小,
∴不等式0≤kx+b<5的解集是0<x≤1.
故答案为0<x≤1.12、6或【分析】根据得出的值,再分情况求出以边边长的直角三角形的面积.【题目详解】∵∴(1)均为直角边(2)为直角边,为斜边根据勾股定理得另一直角边∴故答案为:6或【题目点拨】本题考查了三角形的面积问题,掌握勾股定理以及三角形的面积公式是解题的关键.13、1【分析】取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时EG最短,再根据∠CAD=10°求解即可.【题目详解】解:如图,取AC的中点G,连接EG,∴.∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∠ECD=∠ECD,∴∠DCF=∠GCE,∵AD是等边△ABC底边BC的高,也是中线,∴,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时,,,∴DF=EG=1.故答案为:1.【题目点拨】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.14、1.【题目详解】解:如图,连接AA′、BB′.∵点A的坐标为(0,2),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是2.又∵点A的对应点在直线y=x上一点,∴2=x,解得x=1,∴点A′的坐标是(1,2),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故答案为1.【题目点拨】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣平移.根据平移的性质得到BB′=AA′是解题的关键.15、1.【分析】连接AO,由于△ABC是等腰三角形,点O是BC边的中点,故AO⊥BC,再根据勾股定理求出AO的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AO的长为CP+PO的最小值,由此即可得出结论.【题目详解】连接AO,
∵△ABC是等腰三角形,点O是BC边的中点,
∴AO⊥BC,∴,∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AO的长为CP+PO的最小值,∴△OPC周长的最小值.故答案为:1.【题目点拨】本题考查的是轴对称-最短路线问题以及勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.16、1【分析】先求出体育优秀的占总体的百分比,再乘以360°即可.【题目详解】解:圆心角的度数是:故答案为:1.【题目点拨】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.17、4π.【分析】根据圆的周长公式,分别求出赤道的周长和人头沿着赤道环形一周的周长即可得到答案.【题目详解】解:设地球的半径是R,则人头沿着赤道环形时,人头经过的圆的半径是(R+2)m,∴赤道的周长是2πRm,人头沿着赤道环形一周的周长是2π(R+2)m,∴他的头顶比脚底多行2π(R+2)﹣2πR=4πm,故答案为:4π.【题目点拨】本题主要考查了圆的周长的计算方法,难度不大,理解题意是关键.18、3xy(x﹣1)1.【分析】直接提取公因式3xy,再利用公式法分解因式得出答案.【题目详解】解:原式=3xy(x1﹣1x+1)=3xy(x﹣1)1.故答案为:3xy(x﹣1)1.【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.三、解答题(共66分)19、见解析【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【题目详解】∵AF=CD,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.20、(1)a=2,y=﹣x+1;(2)四边形PAOC的面积为;(3)点Q的坐标为或或(﹣,0).【分析】(1)将点P的坐标代入直线l2解析式,即可得出a的值,然后将点B和点P的坐标代入直线l1的解析式即可得解;(2)作PE⊥OA于点E,作PF⊥y轴,然后由△PAB和△OBC的面积即可得出四边形PAOC的面积;(3)分类讨论:①当MN=NQ时,②当MN=MQ时,③当MQ=NQ时,分别根据等腰直角三角形的性质,结合坐标即可得解.【题目详解】(1)∵y=2x+4过点P(﹣1,a),∴a=2,∵直线l1过点B(1,0)和点P(﹣1,2),设线段BP所表示的函数表达式y=kx+b并解得:函数的表达式y=﹣x+1;(2)过点P作PE⊥OA于点E,作PF⊥y轴交y轴于点F,由(1)知,AB=3,PE=2,OB=1,点C在直线l1上,∴点C坐标为(0,1),∴OC=1则;(3)存在,理由如下:假设存在,如图,设M(1﹣a,a),点N,①当MN=NQ时,∴∴,②当MN=MQ时,∴∴,③当MQ=NQ时,,∴,∴.综上,点Q的坐标为:或或(﹣,0).【题目点拨】此题主要考查一次函数的几何问题、解析式求解以及动直线的综合应用,熟练掌握,即可解题.21、见解析【解题分析】试题分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NCD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.22、(1)证明见解析;(2)证明见解析【分析】(1)证明△ABD≌△ACF即可得到结论;(2)由(1)得∠ABD=∠ACF,∠CDE=∠BDA,根据三角形内角和定理可得∠CED=∠BAD=90°,即BE⊥CF,结合BD平分∠ABC可证明BC=BF.【题目详解】(1)∵∠BAC=90°,∴∠CAF=90°,∴∠BAC=∠CAF,又∵AB=AC,AD=AF,∴△ABD≌△ACF,∴∠ABD=∠ACF;(2)在△CDE和△BDA中∵∠DEC+∠CDE+DCE=180°,∠ABD+∠BDA+∠BAD=180
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物业与业主社区养老服务体系合同3篇
- 二零二五版高速公路监控系统集成采购与安装合同2篇
- 2025版定制化铁艺工程劳务分包服务合同3篇
- 安徽省高三上学期校联考化学试卷及答案(含答案解析)
- 二零二五年度木地板产品回收与再利用合同3篇
- 动漫产业法律法规与版权保护考核试卷
- 城市规划与城市能源结构调整考核试卷
- 塑料加工过程中的物料管理与优化考核试卷
- 二零二五版养老设施建设项目合伙承包合同样本3篇
- 2025年度某某酒店电梯设施维护保养合同2篇
- 劳务协议范本模板
- 2025大巴车租车合同范文
- 老年上消化道出血急诊诊疗专家共识2024
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- 2024年国家保密培训
- 砖厂承包合同签订转让合同
- 思政课国内外研究现状分析
- 皮肤感染的护理诊断与护理措施
- 2023年公务员多省联考《申论》题(广西B卷)
- EPC总承包项目中的质量管理体系
- 高中物理考试成绩分析报告
评论
0/150
提交评论