版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年云南省昆明市寻甸回族彝族自治县职业高级中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知离散型随机变量X的分布列为X123pa则X的数学期望E(x)=(
)
A.
B.2
C.
D.3参考答案:A略2.不等式对任意实数恒成立,则实数的取值范围为(
)A.
B.
C.
D.参考答案:A3.如图,在长方体ABCD﹣A1B1C1D1中,AB=1,BC=,点M在棱CC1上,且MD1⊥MA,则当△MAD1的面积最小时,棱CC1的长为()A. B. C.2 D.参考答案:A【考点】棱柱的结构特征.【分析】如图所示,建立空间直角坐标系.D(0,0,0),设M(0,1,t),D1(0,0,z),(z≥t≥0,z≠0).由MD1⊥MA,可得?=0,z﹣t=.代入=|AM||MD1|,利用基本不等式的性质即可得出.【解答】解:如图所示,建立空间直角坐标系.D(0,0,0),设M(0,1,t),D1(0,0,z),A(,0,0),(z≥t≥0,z≠0).=(0,﹣1,z﹣t),=(﹣,1,t),∵MD1⊥MA,∴?=﹣1+t(z﹣t)=0,即z﹣t=.=|AM||MD1|=×=×==≥=,当且仅当t=,z=时取等号.故选:A.4.已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量与的夹角为()A.30° B.45° C.60° D.90°参考答案:C【考点】空间向量的夹角与距离求解公式.【专题】计算题.【分析】由题意可得:,进而得到与||,||,再由cos<,>=可得答案.【解答】解:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以,所以═0×(﹣1)+3×1+3×0=3,并且||=3,||=,所以cos<,>==,∴的夹角为60°故选C.【点评】解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题5.下列四个命题中的真命题是
(
)A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过任意两个不同点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.C.不经过原点的直线都可以用方程+=1表示D.经过定点A(0,b)的直线都可以用方程y=kx+b表示参考答案:B略6.已知两条直线和互相垂直,则等于A.2
B.1
C.0
D.参考答案:D略7.已知是可导的函数,且对于恒成立,则(
)A、
B、C、
D、参考答案:D略8.已知一组数的平均数是,方差,则数据的平均数和方差分别是
(
)
A.11,8
B.10,8
C.11,16
D.10,16参考答案:C9.已知命题p1:函数在R为增函数,p2:函数在R为减函数,则在命题q1:,q2:,q3:和q4:中,真命题是A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4参考答案:C是真命题,是假命题,∴:,:是真命题.选C.10.已知为坐标原点,为抛物线的焦点,为上一点,若,则△的面积为(
)A.2
B.
C.
D.4参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.在正方体ABCD-A1B1C1D1的各条棱中,与直线AA1异面的棱有
条.参考答案:4
12.右图的发生器对于任意函数,可制造出一系列的数据,其工作原理如下:①若输入数据,则发生器结束工作;②若输入数据时,则发生器输出,其中,并将反馈回输入端.现定义,.若输入,那么,当发生器结束工作时,输出数据的总个数为
.
参考答案:513.观察下列等式:
,
,
,
,……猜想:
().参考答案:略14.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工
人.参考答案:10略15.若,则等于______________。参考答案:略16.
给出以下四个问题:①输入一个数x,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数f(x)=的函数值.其中需要用选择结构来描述算法的有________个.参考答案:317.已知a?R+,且a≠1,
又M=,N=,P=,则M,N,P的大小关系是
_________.参考答案:M>N>P三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=,其中,.(1)求函数f(x)的最小正周期及单调区间;(2)设△ABC的内角A、B、C所对的边分别为a、b、c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a、b值.参考答案:【考点】余弦定理的应用;平面向量数量积的运算.【专题】综合题;函数思想;综合法;三角函数的图像与性质;解三角形;平面向量及应用.【分析】(1)运用向量的数量积的坐标表示和二倍角公式,及两角差的正弦公式,化简f(x),再由周期公式和正弦函数的单调区间,解不等式即可得到所求;(2)设△ABC中,由f(C)=0,可得sin(2C﹣)=1,根据C的范围求得角C的值,再利用正弦定理和余弦定理求得a、b的值.【解答】解:(1)f(x)==cosx(sinx﹣cosx)﹣1+=sin2x﹣(1+cos2x)﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,即有函数f(x)的最小正周期为T==π,由2kπ﹣≤2x﹣≤2kπ+,可得kπ﹣≤x≤kπ+,k∈Z,由2kπ+≤2x﹣≤2kπ+,可得kπ+≤x≤kπ+,k∈Z,即有增区间为,减区间为,k∈Z;(2)f(C)=0,即为sin(2C﹣)=1,由0<C<π,即有2C﹣=,解得C=.由sin(A+C)=2sinA,即sinB=2sinA,由正弦定理,得=2①.由余弦定理,得c2=a2+b2﹣2abcos,即a2+b2﹣ab=9②,由①②解得a=,b=2.【点评】本题主要考查向量的数量积的坐标表示和三角恒等变换、正弦函数的周期性、单调性、正弦定理和余弦定理的应用,属于中档题.19.(本小题满分15分)已知函数图像上的点处的切线方程为.(1)若函数在时有极值,求的表达式(2)函数在区间上单调递增,求实数的取值范围参考答案:(1)(2)实数的取值范围为略20.(本小题满分12分)已知椭圆的焦点为和,椭圆上一点到两焦点的距离之和为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与椭圆交于两点.当变化时,求面积的最大值(为坐标原点).参考答案:(Ⅰ)设椭圆的标准方程为,
长轴长,,半焦距,.
………2分
椭圆的标准方程为.
………3分(Ⅱ),消去并整理,得.
………5分判别式,解得.由题意,知.………6分
设,,由韦达定理,得,.
………7分设直线与轴的交点为,则.所以面积.
………9分
………11分所以,当,即时,面积取得最大值.
………12分21.(本小题满分12分)已知直线的方程为,,点的坐标为.(1)求证:直线恒过定点,并求出定点坐标;(2)求点到直线的距离的最大值;(3)设点在直线上的射影为点,的坐标为,求线段长的取值范围.参考答案:证明:(1)由得,所以直线恒过直线与直线交点,解方程组得,所以直线恒过定点,且定点为.解:(2)设点在直线上的射影为点,则,当且仅当直线与垂直时,等号成立,所以点到直线的距离的最大值即为线段的长度为.(3)因为直线绕着点旋转,所以点在以线段为直径的圆上,其圆心为点,半径为,因为的坐标为,所以,从而.22.已知变换T把平面上的点A(2,0),B(0,)分别变换成点A'(2,2),B'(﹣,).(1)试求变换T对应的矩阵M;(2)若曲线C在变换T的作用下所得到的曲线的方程为x2﹣y2=4,求曲线C的方程.参考答案:【考点】OC:几种特殊的矩阵变换.【分析】(1)先设出所求矩阵,利用待定系数法建立一个四元一次方程组,解方程组即可;(2)先设P(x,y)是曲线C上的任一点,P1(x′,y′)是P(x,y)在矩阵T对应变换作用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《广告效果的测定》课件
- 通信设备自动化生产-洞察分析
- 《秋季科学与健康》课件
- 网络安全性优化-洞察分析
- 特拉唑嗪心血管毒性评估-洞察分析
- 铁合金行业污染源解析-洞察分析
- 血栓药物作用机制探讨-洞察分析
- 艺术品市场趋势与风险管理-洞察分析
- 语音助手在残疾人座车中的应用-洞察分析
- 图像化教育应用效果评估-洞察分析
- 2024年七年级上册历史期末常考问答题
- 2024年部编新改版语文小学三年级上册第二单元复习课教案
- ISO 56007-2023创新管理 管理机会和想法的工具和方法 指南雷泽佳译-2024
- 美的供应链变革及智慧采购解决方案
- 高低压电力系统预试验及维保服务方案
- 教师教育技能培训(3篇模板)
- 代发工资委托书格式样本
- YBT 6246-2024《核电工程用热轧带肋钢筋》
- 管桁架焊接 (1)讲解
- 大学助农直播创业计划书
- 心理健康教育国内外研究现状
评论
0/150
提交评论