(完整版)数列知识点总结及题型归纳_第1页
(完整版)数列知识点总结及题型归纳_第2页
(完整版)数列知识点总结及题型归纳_第3页
(完整版)数列知识点总结及题型归纳_第4页
(完整版)数列知识点总结及题型归纳_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

让学习成为一种习惯!一、数列的概念a1n2nna;na,a,aaa。123nna}nnn51111,,,,2345…a=n(nnNn1a=(nNnn①aana=fnnnnnk1(kZ);②1)=nnkn项2536475869f(n)Nn从1ffff(n)fnan2n1an……S(n1)a1aS(n≥2)nSaSnnnnnn1a}n项和s2n3,求数列a}2nnn12222,,,;,,,。n2a3nna,,a,a,a;a2379)为.2让学习成为一种习惯!二、等差数列2个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。用递推公式表示为aad(n2)或aad(n1)。nn1an1n2n1aa,nnn1aa(nd;n10d0d0APdaa16,a,则aa)79412na}a1d3a2005nn1na2nb2n1a为nb为nnnaba,A,bAa与bA2aba,A,bA2aaa(2aaa)2n1nn2nnmnmaaaa15aaa80aaa()111231231213nA.12010590752.设数列a})na2nanaa(mn);mam,nNaa(nm)dd,,nnmnmnm,n,p,qN且mnpqaaaa;anmnpqn(aa)n(n1)1dnSnandn(a)n2。12222n11)(SAnBn(,B为常数)a2nn(aa)n(aa)nSn(m1nm22naa12aa...aaan3451273让学习成为一种习惯!Sana,3a11S)7nn2672aaa=anSSn9249naaa10a)519n33)项项项项21,则aaaaanSSnn258SnSa则a5a95n53Snbbbbbn112bb;nnaa10S70d)n21132333s12aasnna63nnSaSanSSTn}nnn7nnnT。nanSa30,a50nn1020aSnnna}S48,S168,求a和da10,S5,求a和S;(3)n81216588aa40,求S315174让学习成为一种习惯!偶奇;②SSa2nSSnd;奇偶nan1Sn2n1奇偶SSaa。奇n1n中S偶S,SS,SSn2nn3n2nam2m3m)nn2n3n。an14,SS30,则SanS=Snn4791SSSan==363nnSS6313181910aad常数)(nNan1nn2aaa(nN)an1nn2naknb(k,b为常数)annnSAnBn(,B为常数)a2nna}aa2a}为()nnn1na}a2n5a}为()nnn5让学习成为一种习惯!a}的前ns2n4,则数列a})2nnna}的前ns2n2,则数列a})nnna}a2a0,则数列a})an2n1nnn,且a2aa0(nN)aaan14n2n1nanSanSa)nnnn0,d0a01,d0aSS1nnSS,SSnanbn2nnnnNana0a0或aSnnNn。na0a0n1nnn1aa,SSn19anSnna12,S,S03dS,S,,S126让学习成为一种习惯!aSnSSSSS*nn566780)a0C.SSS与SS79567nn98a(nNan99nn5.已知a}a311d8。n(1)数列a}na}n前nna}a010S0a}n前d10nna}a25SSS,1179nnS(n1)a1SS(n2)nnn11.数列a}nSn15a}2nnn列a}nn4n,则anS2nn3.设数列a}nS2a}nnn1aa前n和S(na1n1n2nan7让学习成为一种习惯!ana}Sn2a)8n项和nn(qaq(q0)。a:qn1n递推关系:aaqn1n通项公式:aaqn1n1推广:aaqnmnm1.aaq2a1nn2.aaq2a_____.3719naaaq)n212,a54a=aan258a}a3aaa()n1345ABCD,b,ca与c,注:acacab为bb22323和)()1(B)1(C)1(D)22a,a,aaa0a且n项1136nn和S)nn7nnnnn2222nn4433248让学习成为一种习惯!若mnpqaaaa(其中m,n,p,qN)mnpqanm(nN)q,aaa2nanmnmnmana既是等差数列又是等比数列ann2x5x10aa()2a和a1an1047()52C)1(D)1B()2222100a=aa,aa5n19a,aa,aaaan1634nn1anTlgalgalga,求Tn12nna}aaaa18,则logalogaloga()n56473132310log53a}a0,n1,2,naa52(n3)2n1nn2n5logalogaloga212322n1()n(2n(n2(n22n2.前nna(qq)aaq(1Saqnn11n1q1qa}a5q2nSn1na}a51q12nn项n和Sn9让学习成为一种习惯!a}a6aa30nSna和Sn(nN)f(n))213nnf(n)2222247103n102222(81)(81)(81)(81)771737n4nnnanSSSS;nn369a}nSSqnnn.nan,S,Snkk3kS2kSkN*S2kSS3kaaaaaaaa123kk12k2k1SS3kSSSk2kk3k2kS9SSS63anSnn=673832n2n3n)aS10,S30,则Snm2m3maq(常数)n1aanna2aa(aan1nn2nnakq(k,q为常数)annnSkq)(k,q为常数)annnnSkkq(k,q为常数)annna}a2n,则数列a}为()nnn2.已知数列a}aaa(a,则数列a}为()2n1nn2nnn10让学习成为一种习惯!a}s22n1a})的前nnnnS(n1)a1SS(n2)nnn11anSaaSaaa3nn1n1234nan5,SSn)aa前SnnN*1nn1nn列a1na}a7,aa26,求a;nn357a}a2,aana}n1nn1na,且a2aa0(nNaaa14n2n1nnn11a}a12aaannn1n11让学习成为一种习惯!11a0设数列a}11,求a}且1a1annn1n2a已知数列a}an1,a1,求数列a}na2n1nn等比数列a}2aa1a9aa,求数列a},212326nn已知数列a}a2,a3a(n,求数列a}n1nn1n已知数列a}a,且aaaa2(nNa12n2nn1nn已知数列a}a,a52(a5)(nN且n1an11nnnna}a,a5223(a522)(nN且n1an11nnnn12让学习成为一种习惯!1aa,a4an1).a2n1nn1naaf(n)n1naaf21aaf若aaf(n)(n32n1naaf(n)n1nnaf(n)an11k111已知数列a}a,aa,求数列a}2n41n1n1n2n已知数列a}aa2n,a1,求数列a}nn1n1n已知数列a}aa23,a3,求数列a}nnn1n1n13让学习成为一种习惯!设数列a}a2aa32,,求数列a}2n111nnnn(af(n)an1naf(n)af,f,,f(n)aa若n12a13n1aaan2nanaf(k)n1a11k1a}a2(n1)5a,a3,求数列a}nnn1n1n2naa,an1aa。n13n1nnn1n2a3a,a(a。n1n1nnaqaf(n)n1nf(n)14让学习成为一种习惯!()afnn1([()]afnafnn112n2,12()fnan1ana}a1,a2an2)an1nn1naa1,a2a3(n1)a1n1nnn理aa1,a2anN).a*1n1nnn15让学习成为一种习惯!已知数列a}a2a35,a6annn1n1n1ax52(ax5)nnn1na}aa52,a1,求数列a}nnn1n1n1ax2y3(ax2y)nnn1n511,n1aaaaa()16n13n2nn已知数列a}a2a3n4n,a1,求数列a}2nn1n1n22ax(n1)y(n1)z2(axnynz)n1n已知数列a}a2a43,a1n1ann1n1n16让学习成为一种习惯!apaqaqn2n1nasat(asa)n2n1n1nstptstq已知数列a}a5a6a,a1,a2,求数列a}nn2n1n12n(SnS,n1a1a或SnSS,n2nnnn11anSaaSaaa3nn1n1234nan17让学习成为一种习惯!15,S)aa前nSSnnNa*1nn1nnn1前n和S(na1aan1n2nanan1已知数列a}nS(aa2)a,a,aS6nnnnn249列a}nn与1n151例a}aaCC,b,求数列b}2a2n1n1annnn18让学习成为一种习惯!1n1a1,a)aa}2n1n1nnnannbb{}nn(2aa}a,a1,求数列a}na2nn11nn1nn与I第a}na,aa2aa(na(n2),求a}1n123n1nn3,a3a…3aaN*aaa2n1123nnn19让学习成为一种习惯!(已知数列a}aa3(n1)2n,5,求数列a}an1n1nnaa3(n1)2nn1naa3n2n1[a232a3(2nn2n2nn12nn(n2)(n1)n2nn1[a]3(n2)2n33(nn2(2)(1)n32nna3(n2)(n1)n2(n3)(n2)(n1)n3an131(n2)(nn2nnn(3)(2)(1)n(n1)an1n221n(n又a。nn5a}a531221nn(a}a23aa7,求数列a},n5nn1n1na23a,a75a,a0。nn1n1nn1lga5lganlg3lg2n1n20让学习成为一种习惯!1a}a4a124aa1a}16n1nn1nn1b124aab1)224nnnnna(qqn)1qn(aa)(nSnandSa11n1n(q22n1a1S1qa}aa3n项和S}12nnaaaanS)n135na}aa3n项和S}12nnfn)()f(n)22222(nN)47103n1021让学习成为一种习惯!2272727n13n4nn7ab求ababab.,,nn1122nnS12x3xnxn12n123nSaaa3ann23.设a}b}ab1ab21ab13,,nn113553aa}b}S求,n.nbnnnn111111((2nn22n12n11n(nnn1)111(11111)[]n(n2)2nn2n(nn2)2n(n(nn2)n11n!(n!!CCCi1ii(n!(nn1nn11annaann11例:1.数列a}annSS)n(nnn522让学习成为一种习惯!156161a}ann(nnn1a}annn1nnn1=111a}aTT.2aaaaaannnn1324nn21111,()。234naa1aabaanNblg()nnnnnS。nn23让学习成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论