版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省金平区六校联考2024届八上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个2.变形正确的是()A. B. C. D.3.如图,用4张全等的长方形拼成一个正方形,用两种方法表示图中阴影部分的面积可得出一个代数恒等式,若长方形的长和宽分别为a、b,则这个代数恒等式是()A.(a+b)2=a2+2ab+b2 B.(a-b)2=(a+b)2-4abC.(a+b)(a-b)=a2-b2 D.(a-b)2=a2-ab+b24.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为(
)A.2cm2
B.3cm2
C.4cm2
D.5cm25.根据图①的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2 B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2 D.(a+3b)(a﹣b)=a2+2ab﹣3b26.一次函数的图象不经过的象限是()A.一 B.二 C.三 D.四7.下列约分正确的是()A. B. C. D.8.下列各命题的逆命题是真命题的是A.对顶角相等 B.全等三角形的对应角相等C.相等的角是同位角 D.等边三角形的三个内角都相等9.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或1810.如图,△ABC与△关于直线MN对称,P为MN上任意一点,下列说法不正确的是()A. B.MN垂直平分C.这两个三角形的面积相等 D.直线AB,的交点不一定在MN上二、填空题(每小题3分,共24分)11.如图,在中,,于,若,,则___________.12.化简:的结果为_______.13.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_____.14.三角形三个内角的度数之比是1:2:3,它的最大边长是6cm,则它最短边长为________.15.已知2m=a,32n=b,则23m+10n=________.16.如图,在中,,,过点作,连接,过点作于点,若,的面积为6,则的长为____________.17.计算____.18.三个全等三角形按如图的形式摆放,则_______________度.三、解答题(共66分)19.(10分)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式.称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程;(2)如图3所示,,请你添加适当的辅助线证明结论.20.(6分)如图,在平面直角坐标系中,点的坐标是,动点从原点O出发,沿着轴正方向移动,以为斜边在第一象限内作等腰直角三角形,设动点的坐标为.(1)当时,点的坐标是;当时,点的坐标是;(2)求出点的坐标(用含的代数式表示);(3)已知点的坐标为,连接、,过点作轴于点,求当为何值时,当与全等.21.(6分)如图,∠1+∠2=180°,∠B=∠E,试猜想AB与CE之间有怎样的位置关系?并说明理由.22.(8分)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.23.(8分)现定义运算,对于任意实数,都有,请按上述的运算求出的值,其中满足.24.(8分)2019年是中国建国70周年,作为新时期的青少年,我们应该肩负起实现祖国伟大复兴的责任,为了培养学生的爱国主义情怀,我校学生和老师在5月下旬集体乘车去抗日战争纪念馆研学,已知学生的人数是老师人数的12倍多20人,学生和老师总人数有540人.(1)请求出去抗日战争纪念馆研学的学生和老师的人数各是多少?(2)如果学校准备租赁型车和型车共14辆(其中型车最多7辆),已知型车每年最车可以载35人,型车每车最多可以载45人,共有几种租车方案?(3)已知型车日租金为2000元,型车日租金为3000元,设租赁型大巴车辆,求出租赁总租金为元与的函数解析式,并求出最经济的租车方案.25.(10分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:DE=DF;(2)若在原有条件基础上再添加AB=AC,你还能得出什么结论.(不用证明)(写2个)26.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,1),B(3,1),C(2,3).(1)作出关于轴对称的图形,并写出点的坐标;(2)求的面积.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.【题目详解】解:∵△DAC和△EBC均是等边三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠BCD,
在△ACE和△DCB中,
∴△ACE≌△DCB(SAS),则①正确;
∴AE=BD,∠CAE=∠CDB,在ACM和△DCN中,,∴△ACM≌△DCN(ASA),∴CM=CN,;则②正确;∵∠MCN=60°,∴为等边三角形;则③正确;∵∠DAC=∠ECB=60°,∴AD∥CE,∴∠DAO=∠NEO=∠CBN,∴;则④正确;∴正确的结论由4个;故选:D.【题目点拨】本题考查了等边三角形的性质,全等三角形的判定与性质,平行线的判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.2、C【解题分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【题目详解】有意义,,,.故选C.【题目点拨】考查了二次根式的性质与化简,正确化简二次根式是解题关键.3、B【解题分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积-小正方形的面积=4个矩形的面积.【题目详解】由图形可知,图中最大正方形面积可以表示为:(a+b)2这个正方形的面积也可以表示为:S阴+4ab∴(a+b)2=S阴+4ab∴S阴=(a+b)2-4ab故选B.【题目点拨】考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.4、C【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【题目详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCES△ABC=4cm1.故选C.【题目点拨】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCES△ABC.5、A【分析】根据图形确定出多项式乘法算式即可.【题目详解】根据图②的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选A.【题目点拨】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6、B【分析】根据一次函数中k与b的符合判断即可得到答案.【题目详解】∵k=2>0,b=-3<0,∴一次函数的图象经过第一、三、四象限,故选:B.【题目点拨】此题考查一次函数的性质,熟记性质定理即可正确解题.7、C【分析】原式各项约分得到结果,即可做出判断.【题目详解】解:A、原式=x4,故选项错误;
B、原式=1,故选项错误;
C、原式=,故选项正确;
D、原式=,故选项错误.
故选:C.【题目点拨】本题考查了约分,约分的关键是找出分子分母的公因式.8、D【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【题目详解】A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;
D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.故选D.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.9、C【分析】只给出等腰三角形两条边长时,要对哪一条边是腰长进行分类讨论,再将不满足三角形三边关系的情况舍去,即可得出答案.【题目详解】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:;②当腰为3时,,三角形不成立;∴此等腰三角形的周长是1.故选:C.【题目点拨】本题主要考查等腰三角形的概念和三角形的三边关系,当等腰三角形腰长不确定时一定要分类讨论,得到具体的三条边长后要将不满足三边关系的答案舍去.10、D【分析】根据轴对称的性质逐项判断即可得.【题目详解】A、P到点A、点的距离相等正确,即,此项不符合题意;B、对称轴垂直平分任意一组对应点所连线段,因此MN垂直平分,此项不符合题意;C、由轴对称的性质得:这两个三角形的面积相等,此项不符合题意;D、直线AB,的交点一定在MN上,此项符合题意;故选:D.【题目点拨】本题考查了轴对称的性质,掌握轴对称的性质是解题的关键.二、填空题(每小题3分,共24分)11、2【分析】延长BA,过点C作CD⊥BA于点D,则△ACD是等腰直角三角形,设CD=AD=h,CH=x,利用面积相等和勾股定理,得到关于h与x的方程组,解方程组,求出x,即可得到CH的长度.【题目详解】解:延长BA,过点C作CD⊥BA于点D,如图:∵,∴∠CAD=45°,∴△ACD是等腰直角三角形,∴CD=AD,∵,∴△ABH和△ACH是直角三角形,设CD=AD=h,CH=x,由勾股定理,得,,∵,∴,联合方程组,得,解得:或(舍去);∴.故答案为:2.【题目点拨】本题考查了等腰三角形的判定和性质,勾股定理,解题的关键是熟练运用勾股定理和面积相等法,正确得到边之间的关系,从而列式计算.12、【分析】先化简二次根式,再合并同类二次根式,即可求解.【题目详解】=,故答案是:【题目点拨】本题主要考查二次根式的加法,掌握合并同类二次根式,是解题的关键.13、1;【解题分析】分析:根据辅助线做法得出CF⊥AB,然后根据含有30°角的直角三角形得出AB和BF的长度,从而得出AF的长度.详解:∵根据作图法则可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.14、3cm【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【题目详解】解:∵三角形三个内角之比为1:2:3,
∴设三角形最小的内角为x,则另外两个内角分别为2x,3x,
∴x+2x+3x=180°,
∴x=30°,3x=90°,
∴此三角形是直角三角形.
∴它的最小的边长,即30度角所对的直角边长为:×6=3cm.故答案为:3cm.【题目点拨】本题考查的是含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,解答此题的关键是根据三角形三个内角度数的比值判断出三角形的形状.15、a3b2【解题分析】试题解析:∵32n=b,∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b216、【分析】过点A作AH⊥DC交DC的延长线于点H,作AF⊥BC于点F,通过等腰直角三角形的性质和关系得出,从而有,然后证明四边形AFCH是正方形,则有,进而通过勾股定理得出,然后利用的面积为6即可求出BC的长度.【题目详解】过点A作AH⊥DC交DC的延长线于点H,作AF⊥BC于点F∵,,AF⊥BC∵AF⊥BC,∵∵AF⊥BC,,AH⊥DC,∴四边形AFCH是正方形故答案为:.【题目点拨】本题主要考查等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质,掌握等腰直角三角形的性质,正方形的性质,勾股定理和平行线的性质是解题的关键,难点在于如何找到BC与CD之间的关系.17、【分析】设把原式化为,从而可得答案.【题目详解】解:设故答案为:【题目点拨】本题考查的是利用平方差公式进行简便运算,掌握平方差公式是解题的关键.18、180°【分析】如图所示,利用平角的定义结合三角形内角和性质以及全等三角形性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,然后进一步求解即可.【题目详解】如图所示,由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7==540°,∵三个三角形全等,∴∠4+∠9+∠6=180°,∵∠5+∠7+∠8=180°,∴540°−180°−180°=180°,故答案为:180°.【题目点拨】本题主要考查了全等三角形性质以及三角形内角和性质,熟练掌握相关概念是解题关键.三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)由图1可知:四个全等的直角三角形的面积+中间小正方形的面积=大正方形的面积,然后化简即可证明;(2)如图,过A作交BC线于D,先证明可得,,然后根据梯形EDBA的面积列式化简即可证明.【题目详解】(1)证明:大正方形面积为:整理得∴;(2)过A作交BC线于D∵,,,∴,∴,∴,∴∴∴.【题目点拨】本题主要考查了运用几何图形来证明勾股定理,矩形和正方形的面积,三角形的面积,锻炼了同学们的数形结合的思想方法.20、(1)(2,2);(,);(2)P(,);(3).【分析】(1)当时,三角形AOB为等腰直角三角形,所以四边形OAPB为正方形,直接写出结果;当时,作PN⊥y轴于N,作PM⊥x轴与M,求出△BNP≌△AMP,即可得到ON+OM=OB-BN+OA+AM=OB+OA,即可求出;(2)作PE⊥y轴于E,PF⊥x轴于F,求出△BEP≌△AFP,即可得到OE+OF=OB+BE+OA+AF=OB+OA,即可求出;(3)根据已知求出BC值,根据上问得到OQ=,△PQB≌△PCB,BQ=BC,因为OQ=BQ+OB,即可求出t.【题目详解】(1)当时,三角形AOB为等腰直角三角形如图所以四边形OAPB为正方形,所以P(2,2)当时,如图作PN⊥y轴于N,作PM⊥x轴与M∴四边形OMPN为矩形∵∠BPN+∠NPA=∠APM+∠NPA=90°∴∠BPN=∠APM∵∠BNP=∠AMP∴△BNP≌△AMP∴PN=PMBN=AM∴四边形OMPN为正方形,OM=ON=PN=PM∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3∴OM=ON=PN=PM=∴P(,)(2)如图作PE⊥y轴于E,PF⊥x轴于F,则四边形OEPF为矩形∵∠BPE+∠BPF=∠APF+∠BPF=90°∴∠BPE=∠APF∵∠BEP=∠AFP∴△BEP≌△AFP∴PE=PFBE=AF∴四边形OEPF为正方形,OE=OF=PE=PF∴OE+OF=OB+BE+OA+AF=OB+OA=2+t∴OE=OF=PE=PF=∴P(,);(3)根据题意作PQ⊥y轴于Q,作PG⊥x轴与G∵B(0,2)C(1,1)∴BC=由上问可知P(,),OQ=∵△PQB≌△PCB∴BC=QB=∴OQ=BQ+OB=+2=解得t=.【题目点拨】此题主要考查了正方形的性质、全等三角形、直角坐标系等概念,关键是作出正方形求出相应的全等三角形.21、AB//CE,理由见解析【解题分析】利用平行线的性质及判定即可得出结论.解:AB//CE,理由如下:∵∠1+∠2=180°,∴DE//BC(同旁内角互补,两直线平行),∴∠ADF=∠B(两直线平行,同位角相等),∵∠B=∠E,∴∠ADF=∠E,∴AB//CE(内错角相等,两直线平行).22、,1.【分析】根据整式的除法法则和乘法公式把式子进行化简,再把a、b的值代入即可求出结果.【题目详解】原式=b2-2ab+4a2-b2=,当a=2,b=1时,原式=4×22-2×2×1=1.考点:整式的运算.23、49【分析】首先解出x的值,再根据题中的运算法则,将中的a,b替换成与运算即可.【题目详解】解:去分母得,解得:.经检验,是原方程的解.又,,当时,.【题目点拨】本题考查了解分式方程及新定义类求解问题,理解题中的新定义运算的法则是解题的关键.24、(1)去抗日战争纪念馆研学的学生有500人,老师有40人;(2)3;(3)租赁A型大巴车9辆和租赁B型大巴车5辆.【分析】(1)设去参观抗日战争纪念馆学生有x人,老师有y人,根据题意,得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租赁B型大巴车m辆,则租赁A型大巴车(14-m)辆,由B型大巴车最多有1辆及租赁的14辆车至少能坐下540人,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出m的值,从而得到租车方案;(3)设租赁总租金为w元,根据总租金=每辆车的租金金额×租车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质即可找
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区物业管理与服务质量提升合同
- 设计承包合同
- 酒店及度假村项目开发合作合同
- IP授权合作项目开发协议书
- 酒店顶岗实习报告大全15篇
- 项目实施经理的工作职责样本(2篇)
- 市实施药品放心工程工作方案样本(2篇)
- 云计算与金融服务创新-洞察分析
- 幼儿园安全应急演练方案(2篇)
- 防治水事故隐患责任追究制度模版(3篇)
- 工程管理英文论文(汉译英)
- 中国当前的民族问题
- 陕西省建筑防火设计、审查、验收疑难问题技术指南-ppt
- 海警法智慧树知到答案章节测试2023年大连海洋大学
- 手机号码段归属地数据库(2016年3月)
- 《借贷记账法》教学设计
- 【试题】人教版二年级下数学暑假每日一练
- 卫生院关于开展满意度调查工作的实施方案
- 纺织材料学选择题
- YY/T 0916.1-2021医用液体和气体用小孔径连接件第1部分:通用要求
- 医务科工作思路(计划)6篇
评论
0/150
提交评论