




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市东钱湖中学2024届八上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,是的角平分线,,,垂足分别为点,连接,与交于点,下列说法不一定正确的是()A. B. C. D.2.已知为整数,且分式的值为整数,则满足条件的所有整数的和是()A.-4 B.-5 C.1 D.33.在、、、中,无理数的个数有()A.1个 B.2个 C.3个 D.4个4.若x没有平方根,则x的取值范围为()A.x为负数 B.x为0 C.x为正数 D.不能确定5.如图,在和中,,若添加条件后使得≌,则在下列条件中,不能添加的是().A., B.,C., D.,6.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A.5、5 B.2、8C.5、5或2、8 D.以上结果都不对7.如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC.一定成立的是()A.②④ B.②③ C.①③ D.①②8.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,D为AC上一点,将△ABD沿BD折叠,使点A恰好落在BC上的E处,则折痕BD的长是()A.5 B. C.3 D.9.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A. B. C. D.不能确定11.如图,在,中,,,,点,,三点在同一条直线上,连结,则下列结论中错误的是()A. B.C. D.12.下列分解因式正确的是(
)A.x3﹣x=x(x2﹣1)
B.x2+y2=(x+y)(x﹣y)C.(a+4)(a﹣4)=a2﹣16
D.m2+m+=(m+)2二、填空题(每题4分,共24分)13.如图,的三条角平分线交于点O,O到AB的距离为3,且的周长为18,则的面积为______.14.已知方程2x2n﹣1﹣3y3m﹣n+1=0是二元一次方程,则m=_____,n=_____.15.小明用计算一组数据的方差,那么=____.16.如图,在的同侧,,点为的中点,若,则的最大值是_____.17.计算:(3×10﹣5)2÷(3×10﹣1)2=_____.18.已知点与点关于轴对称,则________,________.三、解答题(共78分)19.(8分)小明平时喜欢玩“开心消消乐”游戏,本学期在学校组织的几次数学反馈性测试中,小明的数学成绩如下表:月份(第二年元月)(第二年2月)成绩(分)······(1)以月份为x轴,成绩为y轴,根据上表提供的数据在平面直角坐标系中描点;(2)观察(1)中所描点的位置关系,猜想与之间的的函数关系,并求出所猜想的函数表达式;(3)若小明继续沉溺于“开心消消乐“游戏,照这样的发展趋势,请你估计元月(此时)份的考试中小明的数学成绩,并用一句话对小明提出一些建议.20.(8分)(1)解方程:.(2)先化简:,再任选一个你喜欢的数代入求值.21.(8分)图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:方法一:;方法二:.(2)(m+n),(m−n),mn这三个代数式之间的等量关系为___(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x−y的值.22.(10分)某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1.对应聘的王丽、张瑛两人的打分如下表:如果两人中只录取一人,根据表格确定个人成绩,谁将被录用?王丽张瑛专业知识1418工作经验1616仪表形象181223.(10分)已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为1.当△ABC是等腰三角形时,求k的值24.(10分)如图,在平面直角坐标系中,A(-3,3),B(-4,-2),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标________;(2)在y轴上画出点P,使PA+PC最小,并直接写出P点坐标.25.(12分)在农业技术部门指导下,小明家今年种植的猕猴桃喜获丰收.去年猕猴桃的收入结余12000元,今年猕猴桃的收入比去年增加了20%,支出减少10%,结余今年预计比去年多11400元.请计算:(1)今年结余元;(2)若设去年的收入为元,支出为元,则今年的收入为元,支出为元(以上两空用含、的代数式表示)(3)列方程组计算小明家今年种植猕猴桃的收入和支出.26.张康和李健两名运动爱好者周末相约到丹江环库绿道进行跑步锻炼.(1)周日早上点,张康和李健同时从家出发,分别骑自行车和步行到离家距离分别为千米和千米的绿道环库路入口汇合,结果同时到达,且张康每分钟比李健每分钟多行米,求张康和李健的速度分别是多少米分?(2)两人到达绿道后约定先跑千米再休息,李健的跑步速度是张康跑步速度的倍,两人在同起点,同时出发,结果李健先到目的地分钟.①当,时,求李健跑了多少分钟?②求张康的跑步速度多少米分?(直接用含,的式子表示)
参考答案一、选择题(每题4分,共48分)1、B【分析】根据角平分线性质得出DE=DF,证出Rt△AED≌Rt△AFD,推出AF=AE,根据线段垂直平分线性质得出即可.【题目详解】∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,故A选项不符合题意;∵∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵DE=DF,
∴A、D都在线段EF的垂直平分线上,∴EG=FG,故C选项不符合题意;
∴AD⊥EF,故D选项不符合题意;根据已知不能推出EG=AG,故B选项符合题意;故选:B【题目点拨】本题考查了线段垂直平分线性质,角平分线性质,全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.2、B【分析】先把分式进行化简,然后根据分式的值为整数,得到能被2整除,然后求出的值,再结合,即可得到的值,即可得到答案.【题目详解】解:∵,又∵为整数,且分式的值为整数,∴能被2整除,∴或或或;∴或或1或0;∵,∴,∴或或0;∴满足条件的所有整数的和是:;故选:B.【题目点拨】本题考查了分式的值,分式的化简,解题的关键是熟练掌握分式的运算法则进行解题,注意分式的分母不能等于0.3、A【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【题目详解】解:在实数、、、中,是无理数;循环小数,是有理数;是分数,是有理数;=2,是整数,是有理数;
所以无理数共1个.
故选:A.【题目点拨】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.4、A【分析】根据平方根的定义即可求出答案,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.【题目详解】解:∵负数没有平方根,∴若x没有平方根,则x的取值范围为负数.故选:A.【题目点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.5、D【解题分析】解:A.添加,可用判定两个三角形全等,故本选项正确;B.添加,可用判定两个三角形全等,故本选项正确;C.由有可得,;再加上可用判定两个三角形全等,故本选项正确;D.添加,后是,无法判定两个三角形全等,故本选项错误;故选.点睛:本题考查全等三角形的判定方法,要熟练掌握、、、、五种判定方法.6、C【分析】根据腰的情况分类讨论,再根据等腰三角形的周长求另两条边的长即可.【题目详解】当腰长为1时,底长为:11﹣1×2=2;2+1>1,能构成三角形;当底长为1时,腰长为:(11﹣1)÷2=5;5+5>1,能构成三角形.故另两条边的长是5、5或2、1.故选:C.【题目点拨】此题考查的是等腰三角形的定义和构成三角形的条件,根据等腰三角形腰的情况分类讨论和掌握三角形的任意两边之和大于第三边是解决此题的关键.7、A【解题分析】根据全等三角形的判定和性质得出结论进而判断即可.【题目详解】∵点E是等腰三角形△ABD底边上的中点,∴BE=DE,∠AEB=∠AED=90°,∴∠BEC=∠DEC=90°.在△BEC与△DEC中,∵,∴△BEC≌△DEC(SAS)∴BC=CD,∠BCE=∠DCE,∴∠ABC=∠ADC,∴④∠ABC=∠ADC;②AC平分∠BCD正确.故选A.【题目点拨】本题考查了等腰三角形的性质、全等三角形的判定和性质,关键是根据SAS证明△BEC≌△DEC.8、C【分析】根据勾股定理易求BC=1.根据折叠的性质有AB=BE,AD=DE,∠A=∠DEB=90°,
在△CDE中,设AD=DE=x,则CD=8-x,EC=1-6=2.根据勾股定理可求x,在△ADE中,运用勾股定理求BD.【题目详解】解:∵∠A=90°,AB=6,AC=8,
∴BC=1.
根据折叠的性质,AB=BE,AD=DE,∠A=∠DEB=90°.
∴EC=1-6=2.
在△CDE中,设AD=DE=x,则CD=8-x,根据勾股定理得
(8-x)2=x2+22.
解得x=4.
∴DE=4.
∴BD==4,故选C.【题目点拨】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.9、B【解题分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【题目详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【题目点拨】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.10、B【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【题目详解】过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选B.11、C【分析】根据题意,通过三角形的全等性质及判定定理,角的和差,勾股定理进行逐一判断即可得解.【题目详解】A.∵,∴,即,∵在和中,,∴,∴,故A选项正确;B.∵,∴,∴,则,故B选项正确;C.∵,∴只有当时,才成立,故C选项错误;D.∵为等腰直角三角形,∴,∴,∵,∴,∴,故D选项正确,故选:C.【题目点拨】本题主要考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.12、D【解题分析】试题分析:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.故选D.二、填空题(每题4分,共24分)13、27【分析】作OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D、E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【题目详解】如图,作OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D、E、F,∵OB,OC分别平分∠ABC和∠ACB,∴OD=OE=OF=3,∴S△ABC=S△OBC+S△OAC+S△OAB=AB•OD+AC•OE+BC•OF=OD(AB+BC+AC)=×3×18=27,故答案为27.【题目点拨】本题考查了角平分线的性质,三角形的面积;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.14、1【分析】含有两个未知数,并且所含未知数的项的次数是都是1的方程是二元一次方程,根据定义解答即可.【题目详解】由题意得:2n-1=1,3m-n+1=1,解得n=1,,故答案为:,1.【题目点拨】此题考查二元一次方程的定义,熟记定义是解题的关键.15、1【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解.【题目详解】解:由题意可得,这组数据共10个数,且它们的平均数是3∴=10×3=1故答案为:1.【题目点拨】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=.16、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【题目详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.【题目点拨】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题17、.【分析】首先把括号里的各项分别乘方,再根据单项式除法进行计算,最后把负整数指数化为正整数指数即可.【题目详解】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8=.故答案为:.【题目点拨】此题主要考查了单项式的除法以及负整数指数幂,题目比较基础,关键是掌握计算顺序.18、3-1【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【题目详解】∵点A(m-1,3)与点B(2,n+1)关于x轴对称,∴m-1=2,n+1=-3,解得m=3,n=-1.故答案为3,-1.【题目点拨】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题(共78分)19、(1)见解析;(2)y与x之间的函数关系式为:y=-10x+180;(3)估计元月份期末考试中小明的数学成绩是50分;建议:希望小明不要再沉溺于“开心消消乐”游戏,努力学习,提高学习成绩.【分析】(1)根据点的坐标依次在图象中描出各点,再顺次连接即可;(2)根据图象的特征可猜想y是x的一次函数,设y=kx+b,把点(9,90)、(10,80)代入即可根据待定系数法求得结果;(3)把x=13代入(2)中的函数关系式即可求得结果.【题目详解】(1)如图所示:(2)猜想:y是x的一次函数,设解析式为y=kx+b,把点(9,90)、(10,80)代入得,解得:,∴解析式为:y=-10x+180,当x=11时,y=-10x+180=-110+180=70,当x=12时,y=-10x+180=-120+180=60,所以点(11,70)、(12,60)均在直线y=-10x+180上,∴y与x之间的函数关系式为:y=-10x+180;(3)∵当x=13时,y=-10x+180=-130+180=50,∴估计元月份期末考试中小明的数学成绩是50分,希望小明不要再沉溺于“开心消消乐”游戏,努力学习,提高学习成绩.【题目点拨】本题考查了一次函数的应用,涉及了一次函数的图象,待定系数法求函数解析式等,弄清题意,找准各量间的关系是解题的关键.20、(1)x=2;(2)原式=,当x=5时,原式=【分析】(1)先把分式方程去分母化简成整式方程,再解方程得到x的值,经检验即可得到分式方程的解.(2)先根据分式混合运算法则把原式进行化简,即先去括号,在计算乘除法进行约分,再任选一个合适的数代入求值即可.【题目详解】解:(1)方程两边同乘以(x+1)(x-1),则:2(x+1)+(x-1)=7解得:x=2检验:把x=2代入(x+1)(x-1)=3≠0∴原方程的解为:x=2(2)原式=÷=×=∴当x=5时,原式=【题目点拨】本题是计算题,主要考查解分式方程的知识和分式的化简求值,关键是掌握把分式方程化简成最简分式或整式方程、把分式化简成最简分式或整式的方法.21、(1)(m+n)−4mn,(m−n);(2)(m+n)−4mn=(m−n);(3)±5.【分析】(1)观察图形可确定:方法一,大正方形的面积为(m+n),四个小长方形的面积为4mn,中间阴影部分的面积为S=(m+n)-4mn;方法二,图2中阴影部分为正方形,其边长为m-n,所以其面积为(m-n).(2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n)-4mn=(m-n).(3)根据(2)的关系式代入计算即可求解.【题目详解】(1)方法一:S小正方形=(m+n)−4mn.方法二:S小正方形=(m−n).(2)(m+n),(m−n),mn这三个代数式之间的等量关系为(m+n)−4mn=(m−n).(3)∵x+y=9,xy=14,∴x−y==±5.故答案为(m+n)−4mn,(m−n);(m+n)−4mn=(m−n),±5.【题目点拨】此题考查完全平方公式的几何背景,解题关键在于掌握计算公式.22、张瑛.【分析】根据加权平均数的计算公式分别计算即可.【题目详解】解:王丽的成绩为:(分),张瑛的成绩为:(分),由于张瑛的分数比王丽的高,所以应录用张瑛.【题目点拨】本题考查求加权平均数和运用加权平均数做决策.掌握加权平均数的计算公式是解决此题的关键.23、(5)详见解析(4)或【分析】(5)先计算出△=5,然后根据判别式的意义即可得到结论;(4)先利用公式法求出方程的解为x5=k,x4=k+5,然后分类讨论:AB=k,AC=k+5,当AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.【题目详解】解:(5)证明:∵△=(4k+5)4-4(k4+k)=5>0,∴方程有两个不相等的实数根;(4)解:一元二次方程x4-(4k+5)x+k4+k=0的解为x=,即x5=k,x4=k+5,∵k<k+5,∴AB≠AC.当AB=k,AC=k+5,且AB=BC时,△ABC是等腰三角形,则k=5;当AB=k,AC=k+5,且AC=BC时,△ABC是等腰三角形,则k+5=5,解得k=4,所以k的值为5或4.【题目点拨】5.根的判别式;4.解一元二次方程-因式分解法;5.三角形三边关系;4.等腰三角形的性质.24、(1)见解析,点C'的坐标是(1,-1);(2)见解析,点P的坐标是(0,0)【分析】(1)直接利用关于y轴对称点的性质得出对应点的位置进而得出答案;(2)利用轴对称求最短路线的方法,连接A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年耐高温滤料项目提案报告模板
- 2025年地区事业单位教师招聘考试数学学科专业知识试卷(数学分析)
- 2025年茶艺师(初级)职业技能鉴定理论考试试卷(茶叶市场分析)
- 历史专业古代战争史研究练习题
- 2025年电子商务师(初级)职业技能鉴定试卷:电子商务数据分析报告撰写
- 2025年消防工程师消防设施设备选型与消防安全设施布置试题
- 2025年声乐演唱教师资质认证模拟试题
- 2025年文化旅游演艺项目策划运营:文化旅游演艺项目创新策划与市场拓展研究报告
- 汽车行业供应链韧性优化与风险管理创新路径报告
- 深度挖掘2025年K2教育人工智能个性化学习系统应用效果与挑战
- 2023年06月新疆生产建设兵团第一师阿拉尔市度“三支一扶”招募57名人员历年高频考点试题答案详历年高频考点试题答案详解
- 【拓展阅读】徐孺子赏月
- 国家开放大学《农村政策法规》形成性考核(平时作业)参考答案
- 谈判药品审核备案表
- 2022微生物学考试题库
- 介入治疗临床应用
- 宁夏中考历史知识总结
- 日本与确保建筑物施工质量相关的法律制度
- (完整版)焦虑自评量表(SAS)
- 生产安全事故考核办法
- 中国历史地理蓝勇版课后题名词解释简答论述题
评论
0/150
提交评论