安徽省淮南市潘集区2024届数学八上期末教学质量检测试题含解析_第1页
安徽省淮南市潘集区2024届数学八上期末教学质量检测试题含解析_第2页
安徽省淮南市潘集区2024届数学八上期末教学质量检测试题含解析_第3页
安徽省淮南市潘集区2024届数学八上期末教学质量检测试题含解析_第4页
安徽省淮南市潘集区2024届数学八上期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮南市潘集区2024届数学八上期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.点M(1,1)关于y轴的对称点的坐标为()A.(﹣1,1) B.(1,﹣1) C.(﹣1.﹣1) D.(1,1)2.下列各组数中,是方程的解的是()A. B. C. D.3.如图,,平分,若,则的度数为()A. B. C. D.4.小明不慎将一个三角形玻璃摔碎成如图所示的四块,现要到玻璃店配一个与原来一样大小的三角形玻璃,你认为应带去的一块是()A.第1块 B.第2块 C.第3块 D.第4块5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm6.已知函数和,当时,的取值范围是()A. B. C. D.7.点P在AOB的平分线上,点P到OA边的距离等于4,点Q是OB边上的任意一点,则下列选项正确的是()A. B. C. D.8.在长为10cm,7cm,5cm,3cm的四根木条,选其中三根组成三角形,则能组成三角形的个数为()A.1 B.2 C.3 D.49.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容:如图,已知,求作:,使.作法:(1)以为圆心,任意长为半径画弧,分别交、于点、;(2)作射线,并以点为圆心,长为半径画弧交于点;(3)以点为圆心,长为半径画弧交(2)步中所画弧于点;(4)作,即为所求作的角.A.表示点 B.表示C.表示 D.表示射线10.如图,图中直角三角形共有A.1个 B.2个 C.3个 D.4个11.如图,在矩形中,,动点满足,则点到两点距离之和的最小值为()A. B. C. D.12.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为()A.34° B.36° C.38° D.68°二、填空题(每题4分,共24分)13.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{2x+1,1}=x,则x=___.14.在平面直角坐标系中,直线l1∥l2,直线l1对应的函数表达式为,直线l2分别与x轴、y轴交于点A,B,OA=4,则OB=_____.15.若的平方根是±3,则__________.16.如图,在中,的垂直平分线交的平分线于,若,,则的度数是________.17.如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是_________.18.已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.三、解答题(共78分)19.(8分)解方程(1)(2)20.(8分)如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.21.(8分)如图1,在平面直角坐标系中,直线:与轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.22.(10分)如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?23.(10分)先化简,再求值:,其中m=.24.(10分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?25.(12分)已知中,,,过顶点作射线.(1)当射线在外部时,如图①,点在射线上,连结、,已知,,().①试证明是直角三角形;②求线段的长.(用含的代数式表示)(2)当射线在内部时,如图②,过点作于点,连结,请写出线段、、的数量关系,并说明理由.26.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(1)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A1B1C1.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【题目详解】点M(1,1)关于y轴的对称点的坐标为(﹣1,1),故选:A.【题目点拨】此题主要考查坐标与图形,解题的关键是熟知关于y轴的对称点的坐标特点.2、B【分析】将四个答案逐一代入,能使方程成立的即为方程的解.【题目详解】解:A.,故错误;B.,故正确;C.,故错误;D.,故错误.故选:B.【题目点拨】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键.3、B【分析】根据平行线的性质可得,再根据角平分线的定义可得答案.【题目详解】∵,∴,∵平分,∴,故选B.【题目点拨】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.4、B【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【题目详解】1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.【题目点拨】此题考查全等三角形的应用,解题关键在于掌握判定定理.5、C【分析】根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【题目详解】∵ED⊥AB,∠A=30°,∴AE=2ED.∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.故选C.【题目点拨】本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.6、B【分析】由题意得到x−2>2x+1,解不等式即可.【题目详解】解:∵y1>y2,

∴x−2>2x+1,

解得x<−3,故选B.【题目点拨】本题主要考查的是一次函数的性质,一次函数与一元一次不等式的有关知识,把比较函数值的大小问题,转化为不等式的问题,是解本题的关键.7、B【分析】根据角平分线的性质可知点P到OB边的距离等于4,再根据点到直线的距离垂线段最短即可得出结论.【题目详解】解:∵点P在AOB的平分线上,∴点P到OA边的距离等于点P到OB边的距离等于4,∵点Q是OB边上的任意一点,∴(点到直线的距离,垂线段最短).故选:B.【题目点拨】本题考查角平分线的性质,点到直线的距离.理解角平分线上的点到角两边距离相等是解题关键.8、B【分析】根据任意两边之和大于第三边判断能否构成三角形.【题目详解】依题意,有以下四种可能:(1)选其中10cm,7cm,5cm三条线段符合三角形的成形条件,能组成三角形(2)选其中10cm,7cm,3cm三条线段不符合三角形的成形条件,不能组成三角形(3)选其中10cm,5cm,3cm三条线段不符合三角形的成形条件,不能组成三角形(4)选其中7cm,5cm,3cm三条线段符合三角形的成形条件,能组成三角形综上,能组成三角形的个数为2个故选:B.【题目点拨】本题考查了三角形的三边关系定理,熟记三边关系定理是解题关键.9、D【分析】根据尺规作一个角等于已知角的步骤,即可得到答案.【题目详解】作法:(1)以点为圆心,任意长为半径画弧,分别交、于点、;(2)作射线,并以点为圆心,为半径画弧交于点;(3)以点D为圆心,PQ长为半径画弧交(2)步中所画弧于点;(4)作射线,即为所求作的角.故选D.【题目点拨】本题主要考查尺规作一个角等于已知角,掌握尺规作图的基本步骤是解题的关键,注意,尺规作一个角等于已知角的原理是:SSS.10、C【分析】有一个角是直角的三角形是直角三角形.【题目详解】解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.【题目点拨】本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.11、A【分析】先由,得出动点在与平行且与的距离是的直线上,作关于直线的对称点,连接,则的长就是所求的最短距离.然后在直角三角形中,由勾股定理求得的值,即可得到的最小值.【题目详解】设中边上的高是.,,,动点在与平行且与的距离是的直线上,如图,作关于直线的对称点,连接,则的长就是所求的最短距离,在中,,,即的最小值为.故选:A.【题目点拨】本题考查了轴对称﹣最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.12、A【分析】先根据角平分线的定义可得,再根据平行线的判定可得,然后根据平行线的性质即可得.【题目详解】平分,又故选:A.【题目点拨】本题考查了角平分线的定义、平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.二、填空题(每题4分,共24分)13、x=-1或x=1【分析】根据题意,对2x+1和1的大小分类讨论,再根据题意分别列出方程即可求出结论.【题目详解】解:当2x+1<1,即x<0时,min{2x+1,1}=2x+1∴2x+1=x解得:x=-1;当2x+1>1,即x>0时,min{2x+1,1}=1∴x=1;综上所述:x=-1或x=1故答案为:x=-1或x=1.【题目点拨】此题考查的是一元一次方程的应用,掌握题意和分类讨论的数学思想是解决此题的关键.14、1【题目详解】∵直线∥,直线对应的函数表达式为,∴可以假设直线的解析式为,∵,∴代入得到∴∴故答案为1.15、1【分析】根据平方根的定义先得到(±3)2=2a-1,解方程即可求出a.【题目详解】解:∵2a-1的平方根为±3,

∴(±3)2=2a-1,

解得a=1.

故答案为:1.【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16、58°【分析】根据角平分线的性质可得∠DBC=∠ABD,再根据线段垂直平分线的性质可得BE=CE,可得出∠DBC=∠ECB=∠ABD,然后根据三角形内角和定理计算出∠DBC的度数,即可算出∠BEF的度数.【题目详解】解:∵BD平分∠ABC,

∴∠DBC=∠ABD,∵的垂直平分线交的平分线于,

∴BE=CE,

∴∠DBC=∠ECB=∠ABD,∵,,

∴∠DBC=(180°-60°-24°)=32°,

∴∠BEF=90°-32°=58°,

故答案为:58°.【题目点拨】本题考查线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.17、30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【题目详解】由AB=AC、BD=BC得∠ABC=∠ACB、∠C=∠BDC,在△ABC中,∠A=40°,∠C=∠ABC,∴∠C=∠ABC=(180°−∠A)=(180°−40°)=70°;在△ABD中,由∠BDC=∠A+∠ABD得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【题目点拨】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角18、x1<x1【解题分析】由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【题目详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1【题目点拨】本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.三、解答题(共78分)19、(1)原分式方程的解为;(2)原分式方程的解为.【分析】(1)、(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【题目详解】(1)解:两边同乘,得解得检验:当时,所以,原分式方程的解为(2)解:两边同乘,得解得检验:当时,所以,原分式方程的解为.【题目点拨】本题考查了解分式方程,注意要检验方程的根.20、(1)证明见解析(2)48°【解题分析】(1)根据等腰三角形的性质得到∠CAD=∠CDA,根据角平分线的定义得到∠EAD=∠BAD,于是得到结论;(2)设∠DAB=x,得到∠C=3x,根据角平分线的定义得到∠EAB=2∠DAB=2x,求得∠CAB=∠CAE+∠EAB=50°+2x,根据三角形的内角和即可得到结论.【题目详解】(1)∵CA=CD,∴∠CAD=∠CDA,∵AD平分∠BAE,∴∠EAD=∠BAD,∵∠B=∠CDA﹣∠BAD,∠CAE=∠CAD﹣∠DAE,∴∠CAE=∠B;(2)设∠DAB=x,∵∠C=∠3∠DAB,∴∠C=3x,∵∠CAE=∠B,∠B=50°,∴∠CAE=50°,∵AD平分∠BAE,∴∠EAB=2∠DAB=2x,∴∠CAB=∠CAE+∠EAB=50°+2x,∵∠CAB+∠B+∠C=180°,∴50°+2x+50°+3x=180°,∴x=16°,∴∠C=3×16°=48°.【题目点拨】本题考查了等腰三角形的性质,角平分线的定义,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.21、(1);(2);(3)或;(4)t最小值为秒【分析】(1)把B(2,m)代入直线l解析式可求出m的值,即可得B点坐标,设直线BC的解析式为y=kx+b,把B、C两点坐标代入可求得k、m的值,即可的直线BC的解析式;(2)过点O作交BC于点D,可知S△ABC=S△ABD,,联立直线BC与OD的解析式解得交点D的坐标即可;(3)分别讨论P点在y轴的负半轴和正半轴时两种情况,①P点在y轴的负半轴时,作于点N,可证明△AOP△PNM1,设OP=NM1=m,ON=m-2,则M1的坐标为(m,2-m),代入BC解析式即可求出m的值,进而可得M1坐标;②当P点在y轴正半轴时,同①解法可求出M2的坐标,综上即可得答案;(4)作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,可求出AG、AQ、BQ的长,根据时间t=+=BE+EK≥BT,利用面积法求出BT的值即可.【题目详解】(1)解:将点B(2,m)代入得m=3∴设直线BC解析式为得到∴∴直线BC解析式为(2)如图,过点O作交BC于点D∴S△ABC=S△ABD,∴直线OD的解析式为y=x,∴解得(3)①如图,当P点在y轴负半轴时,作于点N,∵直线AB与x轴相交于点A,∴点A坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM1=90°∴∠PAO=∠PNM1,又∵AP=PM1,∠POA=∠PNM1=90°∴△AOP△PNM1,∴PN=OA=2,设OP=NM1=m,ON=m-2∴解得∴②如图,作于点H可证明△AOP△PHM2设HM2=n,OH=n-2∴解得∴M2(,)∴综上所述或M2(,).(4)如图,作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,∵∠CAQ=45°BG⊥x轴,B(2,3)∴AG=4,∴AQ=4,BQ=7,t==BE+EK≥BT,由面积法可得:∴×4×BT=×7×4,∴BT=因此t最小值为.【题目点拨】本题考查一次函数的几何应用,待定系数法求一次函数解析式及面积公式的应用,熟练掌握相关知识是解题关键.22、量出DE的长就等于AB的长,理由详见解析.【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【题目详解】量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE.【题目点拨】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.23、,.【分析】先根据分式的混合运算法则化简,再把m的值代入求值即可.【题目详解】原式===.当m=时,原式==-.【题目点拨】本题考查分式的运算,熟练掌握运算法则是解题关键.24、(1)黄瓜和茄子各30千克、10千克;(2)23元【分析】(1)设当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【题目详解】(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得,答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论