版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市海曙区三校联考2024届数学八上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如果m﹥n,那么下列结论错误的是()A.m+2﹥n+2 B.m-2﹥n-2 C.2m﹥2n D.-2m﹥-2n2.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或73.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A.200元 B.250元 C.300元 D.3504.4的算术平方根是()A. B.2 C.±2 D.±5.要说明命题“若ab,则a2b2”是假命题,能举的一个反例是()A.a3,b2 B.a4,b1 C.a1,b0 D.a1,b26.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形7.如图,四边形绕点顺时针方向旋转得到四边形,下列说法正确的是()A.旋转角是 B.C.若连接,则 D.四边形和四边形可能不全等8.若x2+6x+k是完全平方式,则k=()A.9 B.﹣9 C.±9 D.±39.如图,中,,,垂直平分,则的度数为()A. B. C. D.10.解方程1x-2=A.1=1-x-3x-2 B.C.1=x-1-3x-2 D.二、填空题(每小题3分,共24分)11.如图,正方形的边长为5,,连结,则线段的长为________.12.化简的结果是_____________.13.如图所示,在中,,将点C沿折叠,使点C落在边D点,若,则______.14.如图所示,是由截面相同的长方形墙砖粘贴的部分墙面,根据图中信息可得每块墙砖的截面面积是__________.15.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1>x2,则y1________y2(填“>”或“<”).16.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)
12
10
8
合计/kg
小菲购买的数量/kg
2
2
2
6
小琳购买的数量/kg
1
2
3
6
从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较17.如图,直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,则点G的坐标是____.18.已知在中,,,点为直线上一点,连接,若,则_______________.三、解答题(共66分)19.(10分)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC=(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长20.(6分)定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A为36°,求证:△ABC是锐角三角形;(2)若△ABC是倍角三角形,,∠B=30°,AC=,求△ABC面积;(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.21.(6分)某厂房屋顶呈人字架形(等腰三角形),如图所示,已知,,于点.(1)求的大小;(2)求的长度.22.(8分)某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示,计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?23.(8分)如图所示,四边形是正方形,是延长线上一点.直角三角尺的一条直角边经过点,且直角顶点在边上滑动(点不与点重合),另一直角边与的平分线相交于点.(1)求证:;(2)如图(1),当点在边的中点位置时,猜想与的数量关系,并证明你的猜想;(3)如图(2),当点在边(除两端点)上的任意位置时,猜想此时与有怎样的数量关系,并证明你的猜想.24.(8分)如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(1)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A1B1C1.25.(10分)如图,平分,交于点,,垂足为,过点作,交于点.求证:点是的中点.26.(10分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【题目详解】A.两边都加2,不等号的方向不变,故A正确;B.两边都减2,不等号的方向不变,故B正确;C.两边都乘以2,不等号的方向不变,故C正确;D.两边都乘以-2,不等号的方向改变,故D错误;故选D.【题目点拨】此题考查不等式的性质,解题关键在于掌握运算法则2、D【解题分析】试题分析:根据内角和为720°可得:多边形的边数为六边形,则原多边形的边数为5或6或7.考点:多边形的内角和3、C【解题分析】试题分析:先求出总支出,再根据用于食物上的支出占总支出的30%即可得出结论.解:∵用于衣服上的支是200元,占总支出的20%,∴总支出==1000(元),∴用于食物上的支出=1000×30%=300(元).故选C.考点:扇形统计图.4、B【解题分析】试题分析:根据算术平方根的定义可得4的算术平方根是2,故答案选B.考点:算术平方根的定义.5、D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【题目详解】解:A、a=3,b=2时.满足a>b,则a2>b2,不能作为反例,错误;B、a=4,b=-1时.满足a>b,则a2>b2,不能作为反例,错误;C、a=1,b=0时.满足a>b,则a2>b2,不能作为反例,错误;D、a=1,b=-2时,a>b,但a2<b2,能作为反例,正确;故选:D.【题目点拨】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.6、B【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【题目详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【题目点拨】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7、C【分析】根据旋转的旋转及特点即可依次判断.【题目详解】旋转角是或,故A错误;,故B错误;若连接,即对应点与旋转中心的连接的线段,故则,C正确;四边形和四边形一定全等,故D错误;故选C.【题目点拨】此题主要考查旋转的性质,解题的关键是熟知旋转的特点与性质.8、A【解题分析】试题分析:若x2+6x+k是完全平方式,则k是一次项系数6的一半的平方.解:∵x2+6x+k是完全平方式,∴(x+3)2=x2+6x+k,即x2+6x+1=x2+6x+k∴k=1.故选A.考点:完全平方式.9、B【分析】先根据三角形内角和定理求出的度数,然后根据垂直平分线的性质和等腰三角形的性质得出,最后利用即可得出答案.【题目详解】∵,,∴.∵垂直平分,∴,∴,∴.故选:B.【题目点拨】本题主要考查三角形内角和定理,垂直平分线的性质和等腰三角形的性质,掌握三角形内角和定理,垂直平分线的性质和等腰三角形的性质是解题的关键.10、C【解题分析】本题的最简公分母是(x-2).方程两边都乘最简公分母,可把分式方程转换为整式方程.【题目详解】解:方程两边都乘(x-2),得1=x-1-3(x-2).故选C.【题目点拨】本题考查解分式方程中的去分母化为整式方程的过程,关键是找到最简公分母,注意不要漏乘,单独的一个数和字母也必须乘最简公分,还有就是分子分母互为相反数时约分为-1.二、填空题(每小题3分,共24分)11、【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.【题目详解】解:如图,延长BG交CH于点E,
∵正方形的边长为5,,∴AG2+BG2=AB2,∴∠AGB=90°,在△ABG和△CDH中,∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,∴△ABG≌△BCE(ASA),
∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,
∴GE=BE-BG=4-3=1,
同理可得HE=1,
在RT△GHE中,故答案为:【题目点拨】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.12、【分析】根据分式的减法法则计算即可.【题目详解】解:==故答案为:.【题目点拨】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.13、1【分析】根据折叠的性质可得∠EDA=90°,ED=EC=6cm,再根据直角三角形30°角所对边是斜边的一半可得AE,从而可得AC.【题目详解】解:根据折叠的性质DE=EC=6cm,∠EDB=∠C=90°,∴∠EDA=90°,∵∠A=30°,∴AE=2DE=12cm,∴AC=AE+EC=1cm,故答案为:1.【题目点拨】本题考查折叠的性质,含30°角的直角三角形.理解直角三角形斜边上的中线等于斜边的一半.14、【分析】设每块墙砖的长为xcm,宽为ycm,根据题意,有“三块横放的墙砖比一块竖放的墙砖高5cm,两块横放的墙砖比两块竖放的墙砖低18cm”列方程组求解可得.【题目详解】解:设每块墙砖的长为xcm,宽为ycm,根据题意得:,解得:,∴每块墙砖的截面面积是:;故答案为:112.【题目点拨】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.15、<【分析】根据一次函数的性质,当k<0时,y随x的增大而减小进行判断即可.【题目详解】解:∵一次函数y=-1x+1中k=-1<0,∴y随x的增大而减小,∵x1>x1,∴y1<y1.故答案为<.【题目点拨】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.16、C【解题分析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.17、(,0).【分析】根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.【题目详解】解:由直线y=2x+6可知A(0,6),B(﹣3,0).∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,∴直线AC为y=﹣2x+6,设G(m,0),∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,∴F(m,2m),代入y=﹣2x+6得:2m=﹣2m+6,解得:m,∴G的坐标为(,0).故答案为:(,0).【题目点拨】本题考查了一次函数图象与几何变换,正方形的性质,对称轴的性质,表示出F点的坐标是解题的关键.18、60°或30°【分析】分点D在线段AC上和点D在射线AC上两种情况,画出图形,利用等腰直角三角形的性质和角的和差计算即可.【题目详解】解:当点D在线段AC上时,如图1,∵,,∴,∵,∴;当点D在射线AC上时,如图2,∵,,∴,∵,∴.故答案为:60°或30°.【题目点拨】本题主要考查了等腰直角三角形的性质,属于基础题型,正确分类画出图形、熟练掌握等腰直角三角形的性质是解题关键.三、解答题(共66分)19、(1)40;9;(2)见详解;(3)3.1【分析】(1)根据线段垂直平分线的性质得到AM=BM,NA=NC,根据等腰三角形的性质得到BAM=∠B,∠NAC=∠C,结合图形计算即可;(2)连接AM、AN,仿照(1)的作法得到∠MAN=90°,根据勾股定理证明结论;(3)连接AP、CP,过点P作PE⊥BC于点E,根据线段垂直平分线的性质得到AP=CP,根据角平分线的性质得到PH=PE,证明Rt△APH≌Rt△CPE得到AH=CE,证明△BPH≌△BPE,得到BH=BE,结合图形计算即可.【题目详解】解:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AB边的垂直平分线交BC边于点M,∴AM=BM,∴∠BAM=∠B,同理:NA=NC,∴∠NAC=∠C,∴∠MAN=110°﹣(∠BAM+∠NAC)=40°,∵△AMN的周长为9,∴MA+MN+NA=9,∴BC=MB+MN+NC=MA+MN+NA=9,故答案为:40;9;(2)如图②,连接AM、AN,∵∠BAC=131°,∴∠B+∠C=41°,∵点M在AB的垂直平分线上,∴AM=BM,∴∠BAM=∠B,同理AN=CN,∠CAN=∠C,∴∠BAM+∠CAN=41°,∴∠MAN=∠BAC﹣(∠BAM+∠CAN)=90°,∴AM2+AN2=MN2,∴BM2+CN2=MN2;(3)如图③,连接AP、CP,过点P作PE⊥BC于点E,∵BP平分∠ABC,PH⊥BA,PE⊥BC,∴PH=PE,∵点P在AC的垂直平分线上,∴AP=CP,在Rt△APH和Rt△CPE中,,∴Rt△APH≌Rt△CPE(HL),∴AH=CE,在△BPH和△BPE中,,∴△BPH≌△BPE(AAS)∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH,∴AH=(BC﹣AB)÷2=3.1.【题目点拨】本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.20、(1)证明见解析;(2);(3)△ADC是倍角三角形,证明见解析.【分析】(1)根据题意证明△ABC是等腰三角形,得出三个内角的度数,得证△ABC是锐角三角形(2)分两种情况讨论,①当∠B=2∠C②当∠A=2∠B或∠A=2∠C时,求出△ABC面积(3)证明△ABD≌△AED,从而证明CE=DE,∠C=∠BDE=2∠ADC,△ADC是倍角三角形【题目详解】(1)∵AB=AC,∴∠B=∠C∵∠A+∠B+∠C=180°,∠A=36°∴∠B=∠C=72°∴∠A=2∠C即△ABC是锐角三角形(2)∵∠A>∠B>∠C,∠B=30°①当∠B=2∠C,得∠C=15°过C作CH⊥直线AB,垂足为H,可得∠CAH=15°∴AH=CH=AC=1.∴BH=∴AB=BH-AH=-1∴S=②当∠A=2∠B或∠A=2∠C时,与∠A>∠B>∠C矛盾,故不存在。综上所述,△ABC面积为(3)∵AD平分∠BAE,∴∠BAD=∠EAD∵AB=AE,AD=AD,∴△ABD≌△AED.∴∠ADE=∠ADB,BD=DE.又∵AB+AC=BD,∴AE+AC=BD,即CE=BD.∴CE=DE.∴∠C=∠BDE=2∠ADC.∴△ADC是倍角三角形.【题目点拨】本题考察了全等三角形的判定定理、三角形面积公式以及倍角三角形的定义,根据题意给出的新定义求解是解题的关键21、(1)120°;(2)【题目详解】解:(1)=--=(2)在中,22、要完成这块绿化工程,预计花费75600元.【分析】设小长方形的长为x米,宽为y米,根据大长方形周长为76米,小长方形宽的5倍等于长的2倍,据此列方程组求解,然后求出面积,最终求得花费.【题目详解】设小长方形的长为x米,宽为y米,由题意得,,解得:,则大长方形的长为20米,宽为18米,面积为:20×18=360平方米,预计花费为:210×360=75600(元),答:要完成这块绿化工程,预计花费75600元.【题目点拨】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,根据图形,设出未知数,找出合适的等量关系,列方程组求解.23、(1)详见解析;(2),理由详见解析;(3),理由详见解析【分析】(1)根据,等量代换即可证明;(2)DE=EF,连接NE,在DA边上截取DN=EB,证出△DNE≌△EBF即可得出答案;(3)在边上截取,连接,证出即可得出答案.【题目详解】(1)证明:∵,∴,∴;(2)理由如下:如图,取的中点,连接,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- N95医用口罩订货协议模板版B版
- 二零二五年度小微企业贷款合同规范(含政策扶持)3篇
- 美容院与客户2025年度美容护理服务合同集锦4篇
- 2025版城市更新项目宅基地拆迁补偿与安置协议4篇
- 二零二五年度美容院超声刀美容项目合作协议4篇
- 二零二五年度多功能打印机租赁及安装合同范本4篇
- 二零二五年度医疗废物处理设备租赁合同3篇
- 2025年度个人二手房买卖合同附属设施设备移交合同4篇
- 二零二五年度工地食堂绿色环保食材采购合同4篇
- 2025年复合材料运输与质量控制合同3篇
- 钢筋桁架楼承板施工方案
- DL-T5434-2021电力建设工程监理规范
- 2024年上海核工程研究设计院股份有限公司招聘笔试冲刺题(带答案解析)
- 眼的解剖结构与生理功能课件
- 2024年银行考试-兴业银行笔试参考题库含答案
- 泵站运行管理现状改善措施
- 2024届武汉市部分学校中考一模数学试题含解析
- SYT 0447-2014《 埋地钢制管道环氧煤沥青防腐层技术标准》
- 浙教版七年级下册科学全册课件
- 弧度制及弧度制与角度制的换算
- 瓦楞纸箱计算公式测量方法
评论
0/150
提交评论