山西省运城市夏县2024届数学八上期末检测试题含解析_第1页
山西省运城市夏县2024届数学八上期末检测试题含解析_第2页
山西省运城市夏县2024届数学八上期末检测试题含解析_第3页
山西省运城市夏县2024届数学八上期末检测试题含解析_第4页
山西省运城市夏县2024届数学八上期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省运城市夏县2024届数学八上期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.人体中红细胞的直径约为0.0000077m,用科学记数法表示数的结果是()A.0.77×10-5m B.0.77×10-6mC.7.7×10-5m D.7.7×10-6m2.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知是一个任意角,在边,上分别取,移动角尺两边相同的刻度分别与点、重合,则过角尺顶点的射线便是角平分线.在证明时运用的判定定理是()A. B. C. D.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30° B.20° C.15° D.14°4.如图,已知,,则的度数是()A. B. C. D.5.已知的三边长为满足条件,则的形状为()A.等腰三角形 B.等腰直角三角形C.等边三角形 D.等腰三角形或直角三角形6.已知、均为正整数,且,则()A. B. C. D.7.如图,长方形中,,点E是边上的动点,现将沿直线折叠,使点C落在点F处,则点D到点F的最短距离为()A.5 B.4 C.3 D.28.下面调查适合利用选举的形式进行数据收集的是()A.谁在电脑福利彩票中中一等奖 B.谁在某地2019年中考中取得第一名C.10月1日是什么节日 D.谁最适合当班级的文艺委员9.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是A.8 B.9 C.10 D.1210.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.1011.下列命题是真命题的是()A.如果两角是同位角,那么这两角一定相等B.同角或等角的余角相等C.三角形的一个外角大于任何一个内角D.如果a2=b2,那么a=b12.具备下列条件的中,不是直角三角形的是()A. B.C. D.二、填空题(每题4分,共24分)13.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.14.等腰三角形有一个外角是100°,那么它的的顶角的度数为_____________.15.若函数y=kx+3的图象经过点(3,6),则k=_____.16.如图,点在同一直线上,已知,要使,以“”需要补充的一个条件是________________(写出一个即可).17.如图,平行四边形ABCD的对角线相交于O点,则图中有__对全等三角形.18.已知实数在数轴上的位置如图所示,则化简___________.三、解答题(共78分)19.(8分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款是多少元?(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)——记录下来,则在这组数据中,众数是多少?20.(8分)某校为美化校园环境,安排甲、乙两个工程队独立完成面积为400m2的绿化区域.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校计划对面积为1800m2的区域进行绿化,每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?21.(8分)如图,直线分别与轴,轴交于点,,过点的直线交轴于点.为的中点,为射线上一动点,连结,,过作于点.(1)直接写出点,的坐标:(______,______),(______,______);(2)当为中点时,求的长;(3)当是以为腰的等腰三角形时,求点坐标;(4)当点在线段(不与,重合)上运动时,作关于的对称点,若落在轴上,则的长为_______.22.(10分)多边形在直角坐标系中如图所示,在图中分别作出它关于轴、轴的对称图形.23.(10分)如图,在中,,点是边上一点,垂直平分,交于点,交于点,连结,求证:.24.(10分)解方程组或不等式组:(l)(2)解不等式组,并把解集在数轴上表示出来.25.(12分)小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.26.在△ABC中,高AD和BE所在直线交于点H,且BH=AC,则∠ABC=____.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】解:0.0000077m=7.7×10-6m.故选D.2、A【分析】由作图过程可得,,再加上公共边可利用SSS定理判定≌.【题目详解】解:在和中,

≌,

故选:A.【题目点拨】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.3、C【分析】先根据平行线的性质得出的度数,进而可得出结论.【题目详解】解:,,故选:【题目点拨】此题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.4、A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角的和解答即可.【题目详解】∵,,∴=130°-20°=110°.故选A.【题目点拨】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角的和.5、D【分析】把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【题目详解】由,得因为已知的三边长为所以所以=0,或,即,或所以的形状为等腰三角形或直角三角形故选:D【题目点拨】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.6、C【分析】根据幂的乘方,把变形为,然后把代入计算即可.【题目详解】∵,∴=.故选C.【题目点拨】本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键.幂的乘方底数不变,指数相乘.7、B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【题目详解】解:连接DB,DF,

在△FDB中,DF+BF>DB,

由折叠的性质可知,FB=CB=,

∴当F在线段DB上时,点D到点F的距离最短,

在Rt△DCB中,,

此时DF=8-4=4,

故选:B.【题目点拨】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8、D【分析】选举形式收集数据适合于调查主观意识情况,不适合客观情况调查.【题目详解】解:根据选举形式的特点可知只有选项D符合题意.故答案为D.【题目点拨】本题主要考查了数据的收集,掌握收据的收集方式是解答本题的关键.9、A【解题分析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.10、C【解题分析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.11、B【分析】根据平行线的性质、余角的概念、三角形的外角性质、有理数的乘方法则判断.【题目详解】解:A、两直线平行,同位角相等,∴如果两角是同位角,那么这两角一定相等是假命题;B、同角或等角的余角相等,是真命题;C、三角形的一个外角大于任何一个与它不相邻的内角,∴三角形的一个外角大于任何一个内角,是假命题;D、(﹣1)2=12,﹣1≠1,∴如果a2=b2,那么a=b,是假命题;故选:B.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12、D【分析】根据三角形的内角和定理和直角三角形的定义逐项判断即可.【题目详解】A、由和可得:∠C=90°,是直角三角形,此选项不符合题意;B、由得,又,则∠A=90°,是直角三角形,此选项不符合题意;C、由题意,,是直角三角形,此选项不符合题意;D、由得3∠C+3∠C+∠C=180°,解得:,则∠A=∠B=≠90°,不是直角三角形,此选项符合题意,故选:D.【题目点拨】本题考查三角形的内角和定理、直角三角形的定义,会判定三角形是直角三角形是解答的关键.二、填空题(每题4分,共24分)13、3,3,.【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【题目详解】平均数=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是,方差==,故答案为:3,3,.【题目点拨】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.14、80°或20°【分析】根据等腰三角形的性质,已知等腰三角形有一个外角为100°,可知道三角形的一个内角.但没有明确是顶角还是底角,所以要根据情况讨论顶角的度数.【题目详解】等腰三角形有一个外角是100°即是已知一个角是80°,这个角可能是顶角,也可能是底角,

当是底角时,顶角是180°-80°-80°=20°,因而顶角的度数为80°或20°.

故填80°或20°.【题目点拨】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15、1【解题分析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.16、等【分析】需要补充的一个条件是BE=CF,若BF=CE,可用AAS证明△ABF≌△DCE;若补充条件AF=DE,也可用AAS证明△ABF≌△DCE.【题目详解】解:要使△ABF≌△DCE,又∵∠A=∠D,∠B=∠C,添加BF=CE或AF=DE,可用AAS证明△ABF≌△DCE;故填空答案:等.【题目点拨】本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.17、1【分析】根据平行四边形的性质及全等三角形的判定方法进行分析,从而得到答案.【题目详解】解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),同理:△ADO≌△CBO;在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理:△ACD≌△CAB;∴图中的全等三角形共有1对.故答案为:1.【题目点拨】本题主要考查了平行四边形的性质、全等三角形的判定;熟记平行四边形的性质是解决问题的关键.18、1【解题分析】根据数轴得到,,根据绝对值和二次根式的性质化简即可.【题目详解】由数轴可知,,

则,

∴,

故答案为:1.【题目点拨】本题考查了绝对值和二次根式的化简及绝对值的性质,关键是根据数轴得出.三、解答题(共78分)19、(1)80人;(2)11.5元;(3)10元.【解题分析】试题分析:(1)参加这次夏令营活动的初中生所占比例是:1﹣10%﹣20%﹣30%=40%,就可以求出人数.(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出平均数.(3)因为初中生最多,所以众数为初中生捐款数.试题解析:解:(1)参加这次夏令营活动的初中生共有200×(1-10%-20%-30%)=80人;

(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,

所以平均每人捐款==11.5(元);

(3)因为初中生最多,所以众数为10(元).20、(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)至少应安排甲队工作10天.【分析】(1)根据题意列分式方程、解分式方程、重要验根;(2)由绿化总费用不超过8万元,列不等式、解不等式即可.【题目详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.【题目点拨】本题考查分式方程的实际应用、不等式的应用等知识,是常见重要考点,掌握相关知识是解题关键.21、(1)-2,0;2,0;(2);(3)当或时,是以为腰的等腰三角形;(4).【分析】(1)先根据求出A,B的坐标,再把B点坐标代入求出b值,即可求解C点坐标,再根据为的中点求出D点坐标;(2)先求出P点坐标得到,再根据即可求解;(3)根据题意分①②,即可列方程求解;(4)根据题意作图,可得对称点即为A点,故AD=PD=4,设,作PF⊥AC于F点,得DF=2-x,PF=-x+4,利用Rt△PFD列方程解出x,得到P点坐标,再根据坐标间的距离公式即可求解.【题目详解】(1)由直线AB的解析式为,令y=0,得x=-2,∴,令x=0,得y=4,∴B(0,4)把B(0,4)代入,求得b=4,∴直线BC的解析式为令y=0,得x=4,∴∵为的中点∴故答案为:-2,0;2,0;(2)由(1)得B(0,4),当为的中点时,则,∵为的中点,∴轴,,,∴∵,∴(3)∵点是射线上一动点,设,当是以为腰的等腰三角形时,①若,,解得:,(舍去),此时;②若,,解得:,此时.综上,当或时,是以为腰的等腰三角形.(4)∵关于的对称点,若落在轴上∴点为A点,∴AD=PD=4,设,作PF⊥AC于F点,∴DF=2-x,PF=-x+4,在Rt△PFD中,DF2+PF2=DP2即(2-x)2+(-x+4)2=42解得x=3-(3+舍去)∴P(3-,+1),∴==故答案为:.【题目点拨】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、等腰三角形及直角三角形的性质.22、见详解【分析】分别作出各点关于x轴的对称点和各点关于y轴的对称点,再顺次连接即可.【题目详解】如图,多边形在直角坐标系中关于轴的对称图形是多边形A"B"C"D";多边形在直角坐标系中关于轴的对称图形是多边形A'B'C'D'.【题目点拨】本题考查的是作图−−轴对称变换,熟知关于坐标轴轴对称的点的坐标特点是解答此题的关键.23、见详解.【分析】由等腰三角形的性质得出,然后根据垂直平分线的性质和等腰三角形的性质得出,通过等量代换得到,最后利用同位角相等,两直线平行即可证明结论.【题目详解】∵,.∵垂直平分,∴,,,.【题目点拨】本题主要考查等腰三角形的性质,垂直平分线的性质和平行线的判定,掌握等腰三角形的性质,垂直平分线的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论