2022年辽宁省盘锦市兴隆台区兴隆中学高三数学文期末试题含解析_第1页
2022年辽宁省盘锦市兴隆台区兴隆中学高三数学文期末试题含解析_第2页
2022年辽宁省盘锦市兴隆台区兴隆中学高三数学文期末试题含解析_第3页
2022年辽宁省盘锦市兴隆台区兴隆中学高三数学文期末试题含解析_第4页
2022年辽宁省盘锦市兴隆台区兴隆中学高三数学文期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年辽宁省盘锦市兴隆台区兴隆中学高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,过抛物线的焦点F的直线交抛物线于A,B两点,交其准线于点C,若,且,则p=(A)1

(B)2

(C)

(D)3参考答案:B2.命题“”的否定是

(A)

(B)

(C)

(D)参考答案:C3.《九章算术》中有如下问题:今有浦生一日,长三尺,莞生一日,长一尺,蒲生日自半,莞生日自倍.问几何日而长等?意思是今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍,若蒲、莞长度相等,则所需时间为(

).(结果精确到0.1,参考数据:,)A.2.2天 B.2.4天 C.2.6天 D.2.8天参考答案:C【分析】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An;莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.利用等比数列的前n项和公式及对数的运算性质即可得出.【详解】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An,则An=.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.则Bn,由题意可得:,整理得:2n+=7,解得2n=6,或2n=1(舍去).∴n=≈2.6.∴估计2.6日蒲、莞长度相等.故选:C.【点睛】本题考查了等比数列的通项公式与求和公式在实际中的应用,考查了推理能力与计算能力,属于中档题.4.把二进制数110011(2)化为十进制数为()A.50 B.51 C.52 D.53参考答案:B【考点】算法思想的历程.

【专题】计算题.【分析】根据所给的二进制的数字,写出用二进制的数字的最后一位乘以2的0次方,倒数第二位乘以2的1次方,以此类推,写出后相加得到结果.【解答】解:∵110011(2)=1×20+1×2+1×24+1×25=51故选B.【点评】本题考查进位制之间的转化,本题解题的关键是用二进制的最后一位乘以2的0次方,注意这里的数字不用出错.5.函数的定义域为(

)(A)

(B)

(C)

(D)参考答案:D6.右图所示的程序框图中的输出结果是(

)A.2

B.4

C.8

D.16参考答案:C略7.已知集合A={0,l,3},B={x|x2﹣3x=0},则A∩B=()A.{0} B.{0,1} C.{0,3} D.{0,1,3}参考答案:C【考点】交集及其运算.【分析】求出B中方程的解确定出B,找出A与B的交集即可.【解答】解:由B中方程变形得:x(x﹣3)=0,解得:x=0或x=3,即B={0,3},∵A={0,1,3},∴A∩B={0,3},故选:C.8.函数的图象的大致形状是(

)参考答案:C9.集合,的子集中,含有元素的子集共有。(A)2个

(B)4个

(C)6个

(D)8个参考答案:B10.已知等比数列的公比为,则“”是“为递减数列”的(

)A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.定义:表示大于或等于的最小整数(是实数).若函数,则函数的值域为____.参考答案:12.把函数的图象向左平移个单位,所得图像的解析式是__________.参考答案:略13.在平面直角坐标系中,点集,,则①点集所表示的区域的面积为________;②点集所表示的区域的面积为

.参考答案:14.在一个袋内装有同样大小、质地的五个球,编号分别为1、2、3、4、5,若从袋中任意取两个,则编号的和是奇数的概率为

(结果用最简分数表示).参考答案:从袋中任意取两个球,共有种。若编号为奇数,则有种,所以编号的和是奇数的概率为。15.某几何体的三视图如图所示,则其体积为

参考答案:16.已知长方形ABCD中,AB=4,BC=1,M为AB的中点,则在此长方形内随机取一点P,P与M的距离小于1的概率为.参考答案:【考点】几何概型.【专题】计算题;规律型;数形结合;转化法;概率与统计.【分析】本题利用几何概型解决,这里的区域平面图形的面积.欲求取到的点P到M的距离大于1的概率,只须求出圆外的面积与矩形的面积之比即可.【解答】解:根据几何概型得:取到的点到M的距离小1的概率:p====.故答案为:.【点评】本题主要考查几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.17.在平面直角坐标系xOy中,直线y=x+b是曲线y=alnx的切线,则当a>0时,实数b的最小值是

.参考答案:﹣1【考点】利用导数研究曲线上某点切线方程.【专题】计算题;导数的概念及应用.【分析】设出曲线上的一个切点为(x,y),利用导数的几何意义求切线的坐标,可得b=alna﹣a,再求导,求最值即可.【解答】解:设出曲线上的一个切点为(x,y),由y=alnx,得y′=,∵直线y=x+b是曲线y=alnx的切线,∴y′==1,∴x=a,∴切点为(a,alna),代入y=x+b,可得b=alna﹣a,∴b′=lna+1﹣1=0,可得a=1,∴函数b=alna﹣a在(0,1)上单调递减,在(1,+∞)上单调递增,∴a=1时,b取得最小值﹣1.故答案为:﹣1.【点评】本题主要考查导数的几何意义的应用,利用导数的运算求出切线斜率,根据切线斜率和导数之间的关系建立方程进行求解是解决本题的关键,考查学生的运算能力.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。参考答案:19.2019年6月,国内的5G运营牌照开始发放.从2G到5G,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对5G的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到5G的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至202l年12月530人后期用户2022年1月及以后200人

我们将大学生升级5G时间的早晚与大学生愿意为5G套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为5G套餐多支付5元的人数占所有早期体验用户的40%).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到5G的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以X表示这2人中愿意为升级5G多支付10元或10元以上的人数,求X的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约5G套餐,能否认为样本中早期体验用户的人数有变化?说明理由.参考答案:(1)0.8(2)详见解析(3)事件D虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【分析】(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到5G,结合古典摡型的概率计算公式,即可求解;(2)由题意X的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件D为“从这1000人的样本中随机抽取3人,这三位学生都已签约5G套餐”,得到七概率为,即可得到结论.【详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到5G的概率估计为样本中早期体验用户和中期跟随用户的频率,即.(2)由题意X的所有可能值为,记事件A为“从早期体验用户中随机抽取1人,该学生愿意为升级5G多支付10元或10元以上”,事件B为“从中期跟随用户中随机抽取1人,该学生愿意为升级5G多支付10元或10元以上”,由题意可知,事件A,B相互独立,且,,所以,,,所以X的分布列为X012P0.180.490.33

故X的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约5G套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化.回答二:事件发生概率小,所以可以认为早期体验用户人数增加.【点睛】本题主要考查了离散型随机变量的分布列,数学期望的求解及应用,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.20.已知函数f(x)=sin2x-cos2x,x∈R.(1)求f(x)的最小正周期,单调递增区间以及函数f(x)图像的对称轴方程;(2)恒有成立,求实数m的取值范围.参考答案:(1)∵当即即时单调递增,∴的单调递增区间为.对称轴

9分(2)∵∴∴由得∴∴即.21.

设函数(1)当时,求的单调减区间;(2)当时,对任意的正整数,在区间上总有个数使得:成立,试求正整数的最大值.

参考答案:(1)由题意,令得,

……………3分若,由得;若,①当时,,当或时,;②当时,,此时函数的单调递减区间为③当时,或,;,④当,函数的单调递减;综上,当时,函数的单调递减区间为,当时,函数的单调递减区间为当时,函数的单调递减区间为当时,函数的单调递减区间为,④当,函数的单调递减;………………….10(2)当时,∵,∴

∴,

………………….12分由题意,恒成立。令,且在上单调递增,,因此,而是正整数,故,所以,时,存在,时,对所有满足题意,∴……………..14分22.(12分)已知函数f(x)=,其中m,n,k∈R.(1)若m=n=k=1,求f(x)的单调区间;(2)若n=k=1,且当x≥0时,f(x)≥1总成立,求实数m的取值范围;(3)若m>0,n=0,k=1,若f(x)存在两个极值点x1、x2,求证:<f(x1)+f(x2)<.参考答案:【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)若m=n=k=1,求导数,利用导数的正负,求f(x)的单调区间;(2)若n=k=1,且当x≥0时,f(x)≥1总成立,先确定m≥0,在分类讨论,确定函数的最小值,即可求实数m的取值范围;(3)令f′(x)=0,x1+x2=2,x1x2=,再结合基本不等式,即可证明结论.【解答】(1)解:m=n=k=1,f′(x)=,∴0<x<1,f′(x)<0,x<0或x>1时,f′(x)>0,∴函数的单调减区间是(0,1),单调增区间是(﹣∞,0),(1,+∞);(2)解:若n=k=1,且当x≥0时,f(x)≥1总成立,则m≥0.m=0,f(x)=,f′(x)=≥0,∴f(x)min=f(0)=1;m>0,f′(x)=,0<m≤,f(x)m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论