版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年北京第154中学高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知A(x,y)、B(x,y)两点的连线平行y轴,则|AB|=(
)A、|x-x|
B、|y-y|
C、x-x
D、y-y参考答案:B2.设△ABC的内角A,B,C所对边分别为.则该三角形(
)A.无解 B.有一解 C.有两解 D.不能确定参考答案:C【分析】利用正弦定理以及大边对大角定理求出角,从而判断出该三角形解的个数。【详解】由正弦定理得,所以,,,,或,因此,该三角形有两解,故选:C.【点睛】本题考查三角形解的个数的判断,解题时可以充分利用解的个数的等价条件来进行判断,具体来讲,在中,给定、、,该三角形解的个数判断如下:(1)为直角或钝角,,一解;,无解;(2)为锐角,或,一解;,两解;,无解.3.设函数是定义在上的偶函数,且当时,是单调函数,则满足的所有之各为(
)A
-3
B
3
C
-8
D8参考答案:C4.在等比数列{an}中,a1=4,公比q=3,则通项公式an等于()A.3n
B.4n
C.3·4n-1
D.4·3n-1参考答案:D略5.在公比为2的等比数列{an}中,,则等于(
)A.4 B.8 C.12 D.24参考答案:D【分析】由等比数列的性质可得,可求出,则答案可求解.【详解】等比数列的公比为2,由,即,所以舍所以故选:D【点睛】本题考查等比数列的性质和通项公式的应用,属于基础题.6.已知f(x)对任意的整数x都有f(x+2)=f(x-2),若f(0)=2003,则f(2004)=
A.2002
B.2003 C.2004 D.2005参考答案:B7.命题“每一个四边形的四个顶点共圆”的否定是()A.存在一个四边形,它的四个顶点不共圆B.存在一个四边形,它的四个顶点共圆C.所有四边形的四个顶点共圆D.所有四边形的四个顶点都不共圆参考答案:A解析:根据全称量词命题的否定是存在量词命题,得命题“每一个四边形的四个顶点共圆”的否定是“存在一个四边形的四个顶点不共圆”,故选A.8.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横纵坐标分别对应数列的前12项,如下表所示:按如此规律下去,则(
)A.1003
B.1005
C.1006
D.2011
参考答案:B略9.已知集合A={2,4,5},B={1,3,5},则A∩B=()A.?
B.{1,2,3,4,5}
C.{5}
D.{1,3}参考答案:C略10.在中,若,,则等于
(
)A.
B.
C.或
D.或参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.设M、N是非空集合,定义M⊙N={x|x∈M∪N且xM∩N}.已知M={x|y=},N={y|y=2x,x>0},则M⊙N等于________.参考答案:{x|0≤x≤1或x>2}12.若,则,,,按由小到大的顺序排列为
.参考答案:13.在△ABC中,B=45°,C=60°,c=,则b=.【考点】正弦定理.参考答案:2【分析】由条件利用正弦定理求得b的值.【解答】解:△ABC中,∵B=45°,C=60°,c=,则由正弦定理可得=,即=,求得b=2,故答案为:2.14.已知数列{an}中,,则a4=________.参考答案:2715.函数在上的最大值比最小值大,则
参考答案:16.、函数的最大值为,最小值为,则______________;参考答案:2略17.函数y=ax在[0,1]上的最大值与最小值的和为,则a=
.参考答案:【考点】指数函数的图象与性质.【专题】函数思想;转化法;函数的性质及应用.【分析】结合题意得到关于a的方程,解出即可.【解答】解:由题意得:a0+a=,解得:a=,故答案为:.【点评】本题考查了指数函数的性质,考查函数最值问题,是一道基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)自点P(-3,3)发出的光线经过x轴反射,其反射光线所在直线正好与圆相切,求入射光线所在直线的方程.参考答案:设入射光线所在的直线方程为,反射光线所在直线的斜率为,根据入射角等于反射角,得
,而点P(-3,3)关于x轴的对称点(-3,-3),根据对称性,点在反射光线所在直线上,故反射光线所在直线的方程为:即,又此直线与已知圆相切,所在圆心到直线的距离等于半径,因为圆心为(2,2),半径为1,所以解得:故入射光线所在的直线方程为: 或
即19.如图,ABCD是一个梯形,AB∥CD,且AB=2CD,M、N分别是DC、AB的中点,已知=a,=b,试用a、b分别表示、、.参考答案:,,试题分析:以向量为基地表示平面内的向量、、.,主要利用向量加减法的三角形法则和平行四边形法则求解试题解析:由题意可知,考点:向量加减法及平面向量基本定理20.(本小题满分12分)已知函数在(0,1)上是增函数,(Ⅰ)实数m的取值集合为A,当m取集合A中的最小值时,定义数列满足且,求数列{an}的通项公式;(Ⅱ)若,数列的前n项和为,求证:.参考答案:解:(1)由题意得f′(x)=﹣3x2+m,∵f(x)=﹣x3+mx在(0,1)上是增函数,∴f′(x)=﹣3x2+m≥0在(0,1)上恒成立,即m≥3x2,得m≥3,-----------------------------2分故所求的集合A为[3,+∞);所以m=3,∴f′(x)=﹣3x2+3,∵,an>0,∴=3an,即=3,∴数列{an}是以3为首项和公比的等比数列,故an=3n;-------------------------------6分(2)由(1)得,bn=nan=n?3n,∴Sn=1?3+2?32+3?33+…+n?3n
①3Sn=1?32+2?33+3?34+…+n?3n+1
②①﹣②得,﹣2Sn=3+32+33+…+3n﹣n?3n+1=﹣n?3n+1化简得,Sn=>.----------------------------12分21.本小题满分12分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高;(Ⅱ)计算甲班的样本方差参考答案:(1)乙
(2)57.2
略22.已知函数f(x)=lg,f(1)=0,当x>0时,恒有f(x)﹣f()=lgx.(1)求f(x)的表达式及定义域;(2)若方程f(x)=lgt有解,求实数t的取值范围;(3)若方程f(x)=lg(8x+m)的解集为?,求实数m的取值范围.参考答案:【考点】函数的零点与方程根的关系;函数的定义域及其求法;函数解析式的求解及常用方法.【专题】综合题;函数思想;转化法;函数的性质及应用.【分析】(1)由已知中函数,以构造一个关于a,b方程组,解方程组求出a,b值,进而得到f(x)的表达式;(2)由(1)中函数f(x)的表达式,转化为一个方程,分离参数,根据f(x)的定义域即可求出.(3)根据对数的运算性质,可将方程f(x)=lg(8x+m),转化为一个关于x的分式方程组,进而根据方程f(x)=lg(8x+m)的解集为?,则方程组至少一个方程无解,或两个方程的解集的交集为空集,分类讨论后,即可得到答案【解答】解:(1)∵当x>0时,f(x)﹣f()=lgx.lg﹣lg=lgx,即lg﹣lg=lgx,即lg(?)=lgx,?=x.整理得(a﹣b)x2﹣(a﹣b)x=0恒成立,∴a=b,又f(1)=0,即a+b=2,从而a=b=1.∴f(x)=lg,∵>0,∴x<﹣1,或x>0,∴f(x)的定义域为(﹣∞,﹣1)∪(0,+∞)(2)方程f(x)=lgt有解,即lg=lgt,∴t=,∴x(2﹣t)=t,∴x=,∴<﹣1,或>0,解得t>2,或0<t<2,∴实数t的取值范围(0,2)∪(2,+∞),(3)方程f(x)=lg(8x+m)的解集为?,∴lg=lg(8x+m),∴=8x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度钣金展柜研发与市场推广合作合同2篇
- 二零二五年度高品质实木地板全球购销合同范本3篇
- 二零二五年掘进机操作人员安全教育与培训合同3篇
- 二零二五版房地产股权托管及资产增值管理合同3篇
- 二零二五年度高级别墅房产出售合同3篇
- 2025年高性能材料采购与合作研发合同3篇
- 二零二五版健身俱乐部健身教练就业保障与福利合同3篇
- 2024新劳动法对人力资源绩效评估与反馈合同3篇
- 专业化生产流程服务协议2024版版B版
- 2024版公共厕所管理承包合同3篇
- 《阻燃材料与技术》-颜龙 习题解答
- 人教版八年级英语上册Unit1-10完形填空阅读理解专项训练
- 2024年湖北省武汉市中考英语真题(含解析)
- GB/T 44561-2024石油天然气工业常规陆上接收站液化天然气装卸臂的设计与测试
- 《城市绿地设计规范》2016-20210810154931
- 网球场经营方案
- 2024年公司保密工作制度(四篇)
- 重庆市康德卷2025届高一数学第一学期期末联考试题含解析
- 建筑结构课程设计成果
- 双梁桥式起重机小车改造方案
- 基于AR的无人机操作训练系统
评论
0/150
提交评论