2022-2023学年广东省汕头市青山中学高二数学文上学期期末试题含解析_第1页
2022-2023学年广东省汕头市青山中学高二数学文上学期期末试题含解析_第2页
2022-2023学年广东省汕头市青山中学高二数学文上学期期末试题含解析_第3页
2022-2023学年广东省汕头市青山中学高二数学文上学期期末试题含解析_第4页
2022-2023学年广东省汕头市青山中学高二数学文上学期期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年广东省汕头市青山中学高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设命题p:x2+2x﹣3<0q:﹣5≤x<1,则命题p成立是命题q成立的(

)条件.A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要参考答案:A【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;数学模型法;简易逻辑.【分析】命题p:x2+2x﹣3<0,解得﹣3<x<1.即可判断出命题p与q关系.【解答】解:命题p:x2+2x﹣3<0,解得﹣3<x<1.又q:﹣5≤x<1,则命题p成立是命题q成立的充分不必要条件.故选:A.【点评】本题考查了一元二次不等式的解法、充要条件的判定,考查了推理能力与计算能力,属于中档题.2.直线的斜率是(

)A.

B.

C.

D.参考答案:A3.设x,y满足约束条件,若目标函数的最大值为2,则的图象向右平移后的表达式为()A. B. C.y=sin2x D.参考答案:C考点:简单线性规划;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质;不等式的解法及应用.分析:作出不等式组对应的平面区域,利用线性规划的知识求出m的值,利用三角函数的图象关系进行平移即可.解答:解:作出不等式组对应的平面区域如图,∵m>0,∴平移直线,则由图象知,直线经过点B时,直线截距最大,此时z最大为2,由,解得,即B(1,1),则1+=2,解得m=2,则=sin(2x+),则的图象向右平移后,得到y=sin[2(x﹣)+]=sin2x,故选:C.点评:本题主要考查三角函数解析式的求解以及线性规划的应用,根据条件求出m的取值是解决本题的关键.4.如图,A、B、C分别为=1(a>b>0)的顶点与焦点,若∠ABC=90°,则该椭圆的离心率为()A.B.1-

C.-1

D.参考答案:A5.已知命题:存在,使;命题:任意,都有。下列结论正确的是(

)A.命题“”是真命题

B.命题“”是假命题C.命题“”是真命题

D.命题“”是真命题

参考答案:D略6.若满足,则的最小值为(A)

(B)

(C)0

(D)

参考答案:D7.与直线和圆都相切的半径最小的圆的方程是(

)A.

B.C.

D. 参考答案:A8.已知命题对于任意非零实数,不等式恒成立;命题函数在区间上是增函数,若命题p和命题q有且只有一个真命题,则实数m的取值范围是A.

B.

C.

D.

参考答案:B9.已知圆(x+2)2+(y﹣2)2=a截直线x+y+2=0所得弦的长度为6,则实数a的值为()A.8 B.11 C.14 D.17参考答案:B【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】求出弦心距,再由条件根据弦长公式求得a的值.【解答】解:圆(x+2)2+(y﹣2)2=a,圆心(﹣2,2),半径.故弦心距d==.再由弦长公式可得a=2+9,∴a=11;故选:B.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.10.命题“若一个数是负数,则它的平方是正数”的否命题是

) A.“若一个数是负数,则它的平方不是正数”

B.“若一个数的平方是正数,则它是负数”

C.“若一个数不是负数,则它的平方不是正数” D.“若一个数的平方不是正数,则它不是负数”参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.参考答案:12π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.【点评】本题考查球的表面积的求法,考查空间想象能力、计算能力.12.当用反证法证明来命题:“若,则”时,应首先假设“______________”成立.参考答案:a,b中至少有一个不为013.已知△ABC中的内角A,B,C所对的边分别是a,b,c,若a=1,C﹣B=,则c﹣b的取值范围是.参考答案:(,1)【考点】三角函数的最值.【分析】用B表示出A,C,根据正弦定理得出b,c,得到c﹣b关于B的函数,利用B的范围和正弦函数的性质求出c﹣b的范围.【解答】解:∵C﹣B=,∴C=B+,A=π﹣B﹣C=﹣2B,∴sinA=cos2B,sinC=cosB,由A=﹣2B>0得0<B<.由正弦定理得,∴b==,c==,∴c﹣b===.∵0<B<,∴<B+<.∴1<sin(B+).∴.股答案为(,1).14.若圆C与圆关于原点对称,则圆C的方程是

.

参考答案:略15.曲线在点(1,0)处的切线方程为

.参考答案:16.在空间直角坐标系中,已知点A(1,0,2),B(1,﹣3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是

;参考答案:(0,-1,0)17.如图,在棱长为1的正方体ABCD-中,与BD所成角为

_________.参考答案:60°,1.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.等比数列{an}中,.(1)求{an}的通项公式;(2)记Sn为{an}的前n项和.若,求m.参考答案:(1)或.(2).分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m。详解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,.点睛:本题主要考查等比数列的通项公式和前n项和公式,属于基础题。

19.定义:称为n个正数p1,p2,…,pn的“均倒数”,已知数列{an}的前n项的“均倒数”为.(1)求{an}的通项公式(2)设Cn=,求数列{cn}的前n项和Sn.参考答案:【考点】数列的求和;数列递推式.【专题】计算题;新定义;转化思想;综合法;等差数列与等比数列;点列、递归数列与数学归纳法.【分析】(1)数列{an}的前项和为Sn=n(n+2),由此能求出{an}的通项公式.(2)由Cn==,利用错位相减法能求出数列{cn}的前n项和Sn.【解答】解:(1)∵数列{an}的前n项的“均倒数”为,∴根据题意得数列{an}的前项和为:Sn=n(n+2),当n≥2时,an=Sn﹣Sn﹣1=n(n+2)﹣(n﹣1)(n﹣2)=2n+1,n=1时,a1=S1=3适合上式,∴an=2n+1.(2)由(1)得Cn==,∴,①3Sn=,②②﹣①,得:2Sn=3+=3+=,∴Sn=2﹣.【点评】本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.20.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(1)求证:AC⊥平面EDB;(2)求四面体B﹣DEF的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)记AC与BD的交点为G,连接EG,GH,由已知可得AB⊥BC,且EF⊥BC,而EF⊥FB,由线面垂直的判定可得EF⊥平面BFC,进一步得到EF⊥FH.则AB⊥FH,再由已知可得FH⊥BC.则FH⊥平面ABCD,得到AC⊥EG.结合AC⊥BD,可得AC⊥平面EDB;(2)由EF⊥FB,∠BFC=90°,可得BF⊥平面CDEF,求出BF=FC=.代入三棱锥体积公式可得求四面体B﹣DEF的体积.【解答】(1)证明:记AC与BD的交点为G,连接EG,GH,由四边形ABCD是正方形,有AB⊥BC,又EF∥AB,∴EF⊥BC,而EF⊥FB,∴EF⊥平面BFC,则EF⊥FH.∴AB⊥FH,又BF=FG,H为BC的中点,∴FH⊥BC.∴FH⊥平面ABCD,则FH⊥AC.又FH∥EG,∴AC⊥EG.又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB;(2)解:∵EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF,∴BF为四面体B﹣DEF的高,又BC=AB=2,∴BF=FC=.∴.21.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.参考答案:【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【分析】(1)设每盘游戏获得的分数为X,求出对应的概率,即可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.【解答】解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:X﹣2001020100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏获得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.22.如图所示,圆心C的坐标为(2,2),圆C与x轴和y轴都相切.(1)求圆C的一般方程;(2)求与圆C相切,且在x轴和y轴上的截距相等的直线方程.参考答案:【考点】圆的一般方程.【分析】(1)确定圆的半径,可得圆的标准方程,进而可得一般方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论