江苏省海安市2024届高一上数学期末统考模拟试题含解析_第1页
江苏省海安市2024届高一上数学期末统考模拟试题含解析_第2页
江苏省海安市2024届高一上数学期末统考模拟试题含解析_第3页
江苏省海安市2024届高一上数学期末统考模拟试题含解析_第4页
江苏省海安市2024届高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省海安市2024届高一上数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A. B.C. D.2.在长方体中,,,则该长方体的外接球的表面积为A. B.C. D.3.设集合,则()A.{1,3} B.{3,5}C.{5,7} D.{1,7}4.已知cosα=,cos(α+β)=-,且α,β∈,则cos(α-β)的值等于A.- B.C.- D.5.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是()A. B.C. D.6.函数图象的一条对称轴是A. B.x=πC. D.x=2π7.对于空间两不同的直线,两不同的平面,有下列推理:(1),(2),(3)(4),(5)其中推理正确的序号为A.(1)(3)(4) B.(2)(3)(5)C.(4)(5) D.(2)(3)(4)(5)8.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为()A.-1<a<1 B.0<a<2C.-<a< D.-<a<9.函数(其中为自然对数的底数)的图象大致为()A. B.C. D.10.已知,,则的值约为(精确到)()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的值__________.12.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______13.已知,求________14.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.15.古希腊数学家欧几里得所著《几何原本》中的“几何代数法”,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.如图,O为线段中点,C为上异于O的一点,以为直径作半圆,过点C作的垂线,交半圆于D,连结,过点C作的垂线,垂足为E.设,则图中线段,线段,线段_______;由该图形可以得出的大小关系为___________.16.如图,在空间四边形中,平面平面,,,且,则与平面所成角的度数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)用篱笆围一个面积为的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?18.已知函数.(1)求函数的最小正周期;(2)求函数的单调减区间;(3)当时,画出函数的图象.19.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(直角三角形三条边,是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口是的中点,分别落在线段上(含线段两端点),已知米,米,记.(1)试将污水净化管道的总长度(即的周长)表示为的函数,并求出定义域;(2)问取何值时,污水净化效果最好?并求出此时管道的总长度.20.某手机生产商计划在2022年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本200万元,每生产(千部)手机,需另投人成本万元,且,由市场调研知,每部手机售价0.5万元,且全年内生产的手机当年能全部销售完.(1)求出2022年的利润(万元)关于年产量(千部)的函数关系式;(利润销售额成本)(2)2022年产量为多少千部时,该生产商所获利润最大?最大利润是多少?21.已知函数,为偶函数(1)求k的值.(2)若函数,是否存在实数m使得的最小值为0,若存在,求出m的值;若不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【题目详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【题目点拨】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.2、B【解题分析】由题求出长方体的体对角线,则外接球的半径为体对角线的一半,进而求得答案【题目详解】由题意可得,长方体体对角线为,则该长方体的外接球的半径为,因此,该长方体的外接球的表面积为.【题目点拨】本题考查外接球的表面积,属于一般题3、B【解题分析】先求出集合B,再求两集合的交集【题目详解】由,得,解得,所以,因为所以故选:B4、D【解题分析】∵α∈,∴2α∈(0,π).∵cosα=,∴cos2α=2cos2α-1=-,∴sin2α=,而α,β∈,∴α+β∈(0,π),∴sin(α+β)=,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)==.5、C【解题分析】根据三角函数的奇偶性,即可得出φ的值【题目详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所以φ的值可以是.故选C.【题目点拨】本题考查了三角函数的图象与性质的应用问题,属于基础题6、C【解题分析】利用函数值是否是最值,判断函数的对称轴即可【题目详解】当x时,函数cos2π=1,函数取得最大值,所以x是函数的一条对称轴故选C【题目点拨】对于函数由可得对称轴方程,由可得对称中心横坐标.7、C【解题分析】因为时,可以在平面内,所以(1)不正确;因为时,可以在平面内,所以(2)不正确;因为时可以在平面内,所以(3)不正确;根据线面垂直的性质定理可得,(4)正确;根据线面平行的性质及线面垂直的性质可得(5)正确,推理正确的序号为(4)(5),故选C.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定与性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.8、C【解题分析】根据新定义把不等式转化为一般的一元二次不等式,然后由一元二次不等式恒成立得结论【题目详解】∵(x-a)⊙(x+a)=(x-a)(1-x-a),∴不等式(x-a)⊙(x+a)<1,即(x-a)(1-x-a)<1对任意实数x恒成立,即x2-x-a2+a+1>0对任意实数x恒成立,所以Δ=1-4(-a2+a+1)<0,解得,故选:C.9、A【解题分析】由为偶函数,排除选项B、D,又,排除选项C,从而即可得答案.【题目详解】解:令,因为,且定义域为,所以为偶函数,所以排除选项B、D;又,所以排除选项C;故选:A.10、B【解题分析】利用对数的运算性质将化为和的形式,代入和的值即可得解.【题目详解】.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】由,结合辅助角公式可知原式为,结合诱导公式以及二倍角公式可求值.【题目详解】解:.故答案为:1.【题目点拨】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.12、1【解题分析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【题目详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:113、【解题分析】由条件利用同角三角函数的基本关系求得和的值,再利用两角和差的三角公式求得的值【题目详解】∵,∴,,,∴,∴故答案为:14、【解题分析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【题目详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【题目点拨】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角15、①.②.【解题分析】利用射影定理求得,结合图象判断出的大小关系.【题目详解】在中,由射影定理得,即.在中,由射影定理得,即根据图象可知,即.故答案为:;16、【解题分析】首先利用面面垂直转化出线面垂直,进一步求出线面的夹角,最后通过解直角三角形求出结果.【题目详解】取BD中点O,连接AO,CO.因为AB=AD,所以,又平面平面,所以平面.因此,即为AC与平面所成的角,由于,,所以,又,所以【题目点拨】本题主要考查直线与平面所成的角,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当这个矩形菜园是边长为的正方形时,最短篱笆的长度为;(2)当这个矩形菜园是边长为的正方形时,最大面积是.【解题分析】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由题意得出,利用基本不等式可求出矩形周长的最小值,由等号成立的条件可得出矩形的边长,从而可得出结论;(2)由题意得出,利用基本不等式可求出矩形面积的最大值,由等号成立的条件可得出矩形的边长,从而可得出结论.【题目详解】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由已知得,由,可得,所以,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,所用篱笆最短,最短篱笆的长度为;(2)由已知得,则,矩形菜园的面积为.由,可得,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,菜园的面积最大,最大面积是.【题目点拨】本题考查基本不等式的应用,在运用基本不等式求最值时,充分利用“积定和最小,和定积最大”的思想求解,同时也要注意等号成立的条件,考查计算能力,属于基础题.18、(1);(2);(2)详见解析.【解题分析】(1)利用二倍角公式和辅助角法得到函数为,再利用周期公式求解;所以函数的周期为;(2)令,利用正弦函数的性质求解;(3)由列表,利用“五点法”画出函数图象.:【题目详解】(1),,,所以函数的周期为;(2)令,解得,所以函数的单调减区间是;(3)由列表如下:0xy0-2020则函数的图象如下:.19、(1),(2)或时,L取得最大值为米【解题分析】(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水净化管道的长度L的函数解析式,并注明θ的范围(2)设sinθ+cosθ=t,根据函数L=在[,]上是单调减函数,可求得L的最大值.同时也可求得值【小问1详解】由题意可得,,,由于,,所以,,,即,【小问2详解】设,则,由于,由于在上是单调减函数,当时,即或时,L取得最大值为米20、(1)(2)2022年产量为千部时,该生产商所获利润最大,最大利润是3800万元【解题分析】(1)根据题意,建立分段函数模型得;(2)结合(1)的函数模型,分类讨论求解最值即可得答案.【小问1详解】解:销售千部手机获得的销售额为:当时,;当时,故,【小问2详解】解:当时,,当时,,当时,,当且仅当,即时,等号成立,因为,所以当(千部)时,所获

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论