




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市东城五中2024届高一数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知“”是“”的充分不必要条件,则k的取值范围为()A. B.C. D.2.已知指数函数在上单调递增,则的值为()A.3 B.2C. D.3.如果,那么下列不等式中,一定成立的是()A. B.C. D.4.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间(单位:天)与病情爆发系数之间,满足函数模型:,当时,标志着疫情将要大面积爆发,则此时约为()(参考数据:)A. B.C. D.5.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为(其中记为不超过的最大整数),且过点,若葫芦曲线上一点到轴的距离为,则点到轴的距离为()A. B.C. D.6.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知,,则下列不等式正确的是()A. B.C. D.8.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.9.函数的单调减区间为()A. B.C. D.10.已知函数是定义在上奇函数.且当时,,则的值为A. B.C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.若扇形AOB的圆心角为,周长为10+3π,则该扇形的面积为_____12.如果,且,则化简为_____.13.将函数y=sinx的图象上的所有点向右平移个单位长度,所得图象的函数解析式为_________.14.两圆x2+y2+6x-4y+9=0和x2+y2-6x+12y-19=0的位置关系是___________________.15.已知是定义在R上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是______.16.函数在上是x的减函数,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,()求函数的单调区间;()若函数在上有两个零点,求实数的取值范围18.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.19.已知(1)当时,解关于的不等式;(2)当时,解关于的不等式20.已知角α的终边经过点,且为第二象限角(1)求、、的值;(2)若,求的值21.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据“”是“”的充分不必要条件,可知是解集的真子集,然后根据真子集关系求解出的取值范围.【题目详解】因为,所以或,所以解集为,又因为“”是“”的充分不必要条件,所以是的真子集,所以,故选:C.【题目点拨】结论点睛:一般可根据如下规则判断充分、必要条件:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分也不必要条件,则对应集合与对应集合互不包含.2、B【解题分析】令系数为,解出的值,又函数在上单调递增,可得答案【题目详解】解得,又函数在上单调递增,则,故选:B3、D【解题分析】取,利用不等式性质可判断ABC选项;利用不等式的性质可判断D选项.【题目详解】若,则,所以,,,ABC均错;因为,则,因为,则,即.故选:D.4、B【解题分析】根据列式求解即可得答案.【题目详解】解:因为,,所以,即,所以,由于,故,所以,所以,解得.故选:B.【题目点拨】本题解题的关键在于根据题意得,再结合已知得,进而根据解方程即可得答案,是基础题.5、C【解题分析】先根据点在曲线上求出,然后根据即可求得的值【题目详解】点在曲线上,可得:化简可得:可得:()解得:()若葫芦曲线上一点到轴的距离为,则等价于则有:可得:故选:C6、D【解题分析】先分析得到,即得点所在的象限.【题目详解】因为是第二象限角,所以,所以点在第四象限,故选D【题目点拨】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.7、C【解题分析】利用指数函数、对数函数的单调性即可求解.【题目详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【题目点拨】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.8、A【解题分析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【题目详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A9、A【解题分析】求出的范围,函数的单调减区间为的增区间,即可得到答案.【题目详解】由可得或函数的单调减区间为的增区间故选:A10、B【解题分析】化简,先求出的值,再根据函数奇偶性的性质,进行转化即可得到结论【题目详解】∵,∴,是定义在上的奇函数,且当时,,∴,即,故选B【题目点拨】本题主要考查函数值的计算,考查了对数的运算以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】设扇形AOB的的弧长为l,半径为r,由已知可得l=3π,r=5,再结合扇形的面积公式求解即可.【题目详解】解:设扇形AOB的的弧长为l,半径为r,∴,l+2r=10+3π,∴l=3π,r=5,∴该扇形的面积S,故答案为:.【题目点拨】本题考查了扇形的弧长公式及扇形的面积公式,重点考查了方程的思想,属基础题.12、【解题分析】由,且,得到是第二象限角,由此能化简【题目详解】解:∵,且,∴是第二象限角,∴故答案为:13、【解题分析】利用相位变换直接求得.【题目详解】按照相位变换,把函数y=sinx的图象上的所有点向右平移个单位长度,得到.故答案为:.14、外切【解题分析】先把两个圆的方程变为标准方程,分别得到圆心坐标和半径,然后利用两点间的距离公式求出两个圆心之间的距离与半径比较大小来判别得到这两个圆的位置关系【题目详解】由x2+y2+6x-4y+9=0得:(x+3)2+(y-2)2=4,圆心O(-3,2),半径为r=2;由x2+y2-6x+12y-19=0得:(x-3)2+(y+6)2=64,圆心P(3,-6),半径为R=8则两个圆心的距离,所以两圆的位置关系是:外切即答案为外切【题目点拨】本题考查学生会利用两点间的距离公式求两点的距离,会根据两个圆心之间的距离与半径相加相减的大小比较得到圆与圆的位置关系15、【解题分析】由题意在上单调递减,又是偶函数,则不等式可化为,则,,解得16、【解题分析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【题目详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【题目点拨】本题考查由复合函数的单调性,求参数的范围,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在上单调递增,在上单调递减;(2).【解题分析】(1)本题可根据正弦函数单调性得出结果;(2)可令,通过计算得出或,然后根据在上有两个零点即可得出结果.【题目详解】(1)令,解得,令,解得,故函数在上单调递增,在上单调递减.(2),令,则,,故或,解得或,因为在上有两个零点,所以,解得,故实数的取值范围为.18、(1)减函数,证明见解析;(2),理由见解析【解题分析】(1)由单调性定义判断;(2)根据奇函数的性质由求得,然后再由奇函数定义验证【题目详解】(1)是上的减函数设,则,所以,,即,,所以,所以是上的减函数(2)若是奇函数,则,,时,,所以,所以为奇函数所以时,函数为奇函数19、(1)或;(2)答案不唯一,具体见解析.【解题分析】(1)先因式分解,进而解出的范围,进而结合指数函数的单调性求得答案;(2)设,然后因式分解,进而讨论a的取值范围求出t的范围,最后结合指数函数的单调性求得答案.【小问1详解】当时,若可得或,即解集为或【小问2详解】令,不等式转化为①当时,不等式解集为;②当时,不等式解集为或;③当时,不等式解集为;④当时,不等式解集为或.综上所述,当时,解集为;当时,解集为或;当时,解集为;当时,解集为或.20、(1);;(2).【解题分析】(1)由三角函数的定义和为第二象限角,求得,即点,再利用三角函数的定义,即可求解;(2)利用三角函数的诱导公式和三角函数的基本关系式化简,代入即可求解.【题目详解】(1)由三角函数的定义可知,解得,因为为第二象限角,∴,即点,则,由三角函数的定义,可得.(2)由(1)知和,可得=.【题目点拨】本题主要考查了三角函数的定义,以及三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的定义,熟练应用三角函数的诱导公式,准确计算是解答的关键你,着重考查了推理与运算能力,属于基础题.21、(1);(2)直线过定点;(3)【解题分析】(1)利用点到直线的距离公式,结合点到的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业废水处理技术与流程优化分析
- 工业污染治理及排放标准
- 工业建筑设计与产业园区规划
- 工业物联网与智能安防的融合
- 工业机器人发展现状与市场分析
- 工业绿色制造从废品到再利用的循环经济
- 工业机器人操作与编程技巧
- 工业自动化中的能源管理与节能技术
- 工业自动化控制系统解决方案
- 工业环境监测与法规遵守
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 重庆万州区社区工作者招聘笔试真题2024
- 2025北方联合电力有限责任公司社会招聘高校毕业生114人笔试参考题库附带答案详解析集合
- 陕09J01 建筑用料及做法图集
- PFMEA模板完整版文档
- 大理智能制造项目可行性研究报告模板
- 现代护理管理工具的应用.ppt
- 上海市基本医疗保险结算项目库动态维护细则
- 灼烫事故应急演练方案
- 徐文明技术集锦
- 新华字典(拼音)
评论
0/150
提交评论