广东省肇庆中学2024届数学高一上期末监测试题含解析_第1页
广东省肇庆中学2024届数学高一上期末监测试题含解析_第2页
广东省肇庆中学2024届数学高一上期末监测试题含解析_第3页
广东省肇庆中学2024届数学高一上期末监测试题含解析_第4页
广东省肇庆中学2024届数学高一上期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省肇庆中学2024届数学高一上期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设的两根是,则A. B.C. D.2.函数图像大致为()A. B.C. D.3.已知函数f(x)=loga(x+1)(其中a>1),则f(x)<0的解集为()A. B.C. D.4.若函数恰有个零点,则的取值范围是()A. B.C. D.5.下列函数中与函数相等的是A. B.C. D.6.若“”是“”的充分不必要条件,则()A. B.C. D.7.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.8.函数的图象的一个对称中心为()A. B.C. D.9.已知函数,若有且仅有两个不同实数,,使得则实数的值不可能为A. B.C. D.10.若定义在上的函数的值域为,则取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,为偶函数,则______12.已知集合,.若,则___________.13.直线,当变动时,所有直线都通过定点______.14.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.15.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________16.函数的值域为,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期和单调递增区间;(2)若当时,求的最大值和最小值及相应的取值.18.已知函数f(x)=a-.(1)若2f(1)=f(2),求a的值;(2)判断f(x)在(-∞,0)上的单调性并用定义证明.19.已知函数,将函数的图象向左平移个单位,再向上平移2个单位,得到函数的图象.(1)求函数的解析式;(2)求函数在上的最大值和最小值.20.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围21.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.(1),;(2),.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】详解】解得或或即,所以故选D2、B【解题分析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【题目详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B3、D【解题分析】因为已知a的取值范围,直接根据根据对数函数的单调性和定点解出不等式即可【题目详解】因为,所以在单调递增,所以所以,解得故选D【题目点拨】在比较大小或解不等式时,灵活运用函数的单调性以及常数和对指数之间的转化4、D【解题分析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【题目详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D5、C【解题分析】对于选项A,D对应的函数与函数的对应法则不同,对于选项B对应的函数与函数的定义域不同,对于选项C对应的函数与函数的定义域、对应法则相同,得解.【题目详解】解:对于选项A,等价于,即A不符合题意,对于选项B,等价于,即B不符合题意,对于选项C,等价于,即C符合题意,对于选项D,,显然不符合题意,即D不符合题意,故选C.【题目点拨】本题考查了同一函数的判断、函数的对应法则及定义域,属基础题.6、B【解题分析】转化“”是“”的充分不必要条件为,分析即得解【题目详解】由题意,“”是“”的充分不必要条件故故故选:B7、C【解题分析】利用对数的运算性质求出,由此可得答案.【题目详解】,所以.故选:C8、C【解题分析】根据正切函数的对称中心为,可求得函数y图象的一个对称中心【题目详解】由题意,令,,解得,,当时,,所以函数的图象的一个对称中心为故选C【题目点拨】本题主要考查了正切函数的图象与性质的应用问题,其中解答中熟记正切函数的图象与性质,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.9、D【解题分析】利用辅助角公式化简,由,可得,根据在上有且仅有两个最大值,可求解实数的范围,从而可得结果【题目详解】函数;由,可得,因为有且仅有两个不同的实数,,使得所以在上有且仅有两个最大值,因为,,则;所以实数的值不可能为,故选D【题目点拨】本题主要考查辅助角公式的应用、三角函数的图象与性质的应用问题,也考查了数形结合思想,意在考查综合应用所学知识解答问题的能力,属于基础题10、C【解题分析】作函数图象,观察图象确定m的范围.【题目详解】函数的图象是对称轴为,顶点为的开口向上的抛物线,当时,;当时,.作其图象,如图所示:又函数在上值域为,所以观察图象可得∴取值范围是,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解题分析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【题目详解】由题意得:解得:故答案为:.【题目点拨】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.12、【解题分析】根据给定条件可得,由此列式计算作答.【题目详解】因集合,,且,于是得,即,解得,所以.故答案为:13、(3,1)【解题分析】将直线方程变形为,得到,解出,即可得到定点坐标.【题目详解】由,得,对于任意,式子恒成立,则有,解出,故答案为:(3,1).【题目点拨】本题考查直线过定点问题,直线一定过两直线、的交点.14、【解题分析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【题目详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【题目点拨】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.15、①.(-∞,1]②.(-1,1]【解题分析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【题目详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.16、【解题分析】分,,三类,根据一次函数和二次函数的性质可解.【题目详解】当时,,易知此时函数的值域为;当时,二次函数图象开口向下,显然不满足题意;当时,∵函数的值域为,∴,解得或,综上,实数a的取值范围是,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,(2)最小值为-1,的值为,最大值为2,的值为【解题分析】(1)利用周期公式可得最小正周期,由的单调递增区间可得的单调递增区间;(2)由得,当,即时,函数取得最大值,当,即时,函数取得最小值可得答案.【小问1详解】函数的最小正周期为,令因为的单调递增区间是,由,解得,所以,函数的单调递增区间是.【小问2详解】令,因为,所以,即,当,即时,函数取得最大值,因此的最大值为,此时自变量的值为;当,即时,函数取得最小值,因此的最小值为,此时自变量的值为.18、(1)3(2)f(x)在(-∞,0)上是单调递增的,证明见解析【解题分析】(1)由已知列方程求解;(2)由复合函数单调性判断,根据单调性定义证明;【小问1详解】∵2f(1)=f(2),∴2(a-2)=a-1,∴a=3.【小问2详解】f(x)在(-∞,0)上是单调递增的,证明如下:设x1,x2∈(-∞,0),且x1<x2,则f(x1)-f(x2)=(a-)-(a-)=-=,∵x1,x2∈(-∞,0),∴x1x2>0.又x1<x2,∴x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)=a-在(-∞,0)上是单调递增的.19、(1)(2)见解析【解题分析】(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数解析式确定函数的最大值即可.【题目详解】(1).由题意得,化简得.(2)∵,可得,∴.当时,函数有最大值1;当时,函数有最小值.【题目点拨】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.20、(1)(2)【解题分析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.21、(1)有最大值、最小值.见解析(2)有最大值、最小值.见解析【解题分析】(1)函数有最大最小值,使函数,取得最大值最小值的x的集合,就是使函数,取得最大值最小值的x的集合;(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合,使函数,取得最小值的x的集合,就是使,取得最大值的z的集合.【题目详解】解:容易知道,这两个函数都有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论