重庆市西南大学附属中学2024届高一上数学期末复习检测试题含解析_第1页
重庆市西南大学附属中学2024届高一上数学期末复习检测试题含解析_第2页
重庆市西南大学附属中学2024届高一上数学期末复习检测试题含解析_第3页
重庆市西南大学附属中学2024届高一上数学期末复习检测试题含解析_第4页
重庆市西南大学附属中学2024届高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市西南大学附属中学2024届高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图像过点,若,则实数的值为A. B.C. D.2.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.43.已如集合,,,则()A. B.C. D.4.已知函数则函数的零点个数为.A. B.C. D.5.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,6.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:

12345678…1415…272829248163264128256…1638432768…134217728268435356536870912这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=A.134217728 B.268435356C.536870912 D.5137658027.若<α<π,化简的结果是()A. B.C. D.8.若方程则其解得个数为()A.3 B.4C.6 D.59.已知函数,则()A.5 B.2C.0 D.110.下列说法不正确的是()A.方向相同大小相等的两个向量相等B.单位向量模长为一个单位C.共线向量又叫平行向量D.若则ABCD四点共线二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线与两坐标轴所围成的三角形的面积为1,则实数值是____________12.当时,,则a的取值范围是________.13.已知在上单调递增,则的范围是_____14.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________15.函数是幂函数且为偶函数,则m的值为_________16.某品牌笔记本电脑的成本不断降低,若每隔4年价格就降低,则现在价格为8100元的笔记本电脑,12年后的价格将降为__________元三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置的高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围18.已知函数的图象(部分)如图所示,(1)求函数的解析式和对称中心坐标;(2)求函数的单调递增区间19.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?20.求函数的定义域,并指出它的单调性及单调区间21.已知函数(1)求的最小正周期;(2)将的图象上的各点________得到的图象,当时,方程有解,求实数m的取值范围在以下①、②中选择一个,补在(2)中的横线上,并加以解答,如果①、②都做,则按①给分.①向左平移个单位,再保持纵坐标不变,横坐标缩短到原来的一半②纵坐标保持不变,横坐标伸长到原来的2倍,再向右平移个单位

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【题目点拨】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.2、D【解题分析】由得,又由得函数为偶函数,所以选D3、C【解题分析】根据交集和补集的定义可求.【题目详解】,故,故选:C.4、B【解题分析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【题目详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【题目点拨】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题5、B【解题分析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【题目详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【题目点拨】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.6、C【解题分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可.【题目详解】由已知可知,要计算16384×32768,先查第一行的对应数字:16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912,所以有:16384×32768=536870912,故选C.【题目点拨】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.7、A【解题分析】利用三角函数的平方关系式,根据角的范围化简求解即可【题目详解】=因为<α<π所以cos<0,结果为,故选A.【题目点拨】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力8、C【解题分析】分别画出和的图像,即可得出.【题目详解】方程,即,令,,易知它们都是偶函数,分别画出它们的图像,由图可知它们有个交点.故选:.【题目点拨】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题.9、C【解题分析】由分段函数,选择计算【题目详解】由题意可得.故选:C.【题目点拨】本题考查分段函数的求值,属于简单题10、D【解题分析】利用平面向量相等概念判断,利用共线向量和单位向量的定义判断.【题目详解】根据向量相等的概念判断正确;根据单位向量的概念判断正确;根据共线向量的概念判断正确;平行四边形中,因此四点不共线,故错误.故选:.【题目点拨】本题考查了命题真假性的判断及平面向量的基础知识,注意反例的积累,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1或-1【解题分析】令x=0,得y=k;令y=0,得x=−2k.∴三角形面积S=|xy|=k2.又S=1,即k2=1,值是1或-1.12、【解题分析】分类讨论解一元二次不等式,然后确定参数范围【题目详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:13、【解题分析】令,利用复合函数的单调性分论讨论函数的单调性,列出关于的不等式组,求解即可.【题目详解】令当时,由题意知在上单调递增且对任意的恒成立,则,无解;当时,由题意知在上单调递减且对任意的恒成立,则,解得.故答案为:【题目点拨】本题考查对数型复合函数的单调性,同增异减,求解时注意对数函数的定义域,属于基础题.14、7【解题分析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【题目详解】设圆是圆关于直线对称的圆,

可得,圆方程为,

可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,

此时的最小值为AB,

,圆的半径,

,

可得因此的最小值为7,

故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可15、【解题分析】由函数是幂函数,则,解出的值,再验证函数是否为偶函数,得出答案.【题目详解】由函数是幂函数,则,得或当时,函数不是偶函数,所以舍去.当时,函数是偶函数,满足条件.故答案为:【题目点拨】本题考查幂函数的概念和幂函数的奇偶性,属于基础题.16、2400【解题分析】由题意直接利用指数幂的运算得到结果【题目详解】12年后的价格可降为81002400元故答案为2400【题目点拨】本题考查了指数函数模型的应用,考查了推理能力与计算能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【题目详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在内经过最高点的次数恰为50次,所以因为,所以,所以的取值范围为(注:的取值范围不考虑开闭)18、(1),对称中心;(2),【解题分析】(1)由函数的图象得出A,求出函数的四分之一周期,从而得出ω,代入最高点坐标求出φ,得函数的解析式,进而求出对称中心坐标;(2)令,从而得到函数的单调递增区间.【题目详解】(1)由题意可知,,,,又当时,函数取得最大值2,所以,,又因为,所以,所以函数,令,,得对称中心,.(2)令,解得,,所以单调递增区间为,【题目点拨】求y=Asin(ωx+φ)的解析式,条件不管以何种方式给出,一般先求A,再求ω,最后求φ;求y=Asin(ωx+φ)的单调递增区间、对称轴方程、对称中心坐标时,要把ωx+φ看作整体,分别代入正弦函数的单调递增区间、对称轴方程、对称中心坐标分别求出x,这儿利用整体的思想;求y=Asin(ωx+φ)的最大值,需要借助正弦函数的最大值的求解方法即可19、(1)400;(2)不能获利,至少需要补贴35000元.【解题分析】(1)每月每吨的平均处理成本为,利用基本不等式求解即得最低成本;(2)写出该单位每月的获利f(x)关于x的函数,整理并利用二次函数的单调性求出最值即可作答.【小问1详解】由题意可知:,每吨二氧化碳的平均处理成本为:,当且仅当,即时,等号成立,∴该单位每月处理量为400吨时,每吨平均处理成本最低;【小问2详解】该单位每月的获利:,因,函数在区间上单调递减,从而得当时,函数取得最大值,即,所以,该单位每月不能获利,国家至少需要补贴35000元才能使该单位不亏损.20、答案见解析【解题分析】由题,解不等式得定义域,再根据,利用整体代换法求解函数的单调递减区间即可.【题目详解】解:要使函数有意义,应满足,解得∴函数定义域为.∵,∴,解得,∴函数的单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论