版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届济南市育英中学高一数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在R上的偶函数f(x)满足,当x∈[0,1]时,则函数在区间上的所有零点的和为()A.10 B.9C.8 D.62.已知,,,则()A. B.C. D.23.已知是锐角,那么是A.第一象限角 B.第一象限角或第二象限角C.第二象限角 D.小于的正角4.下题中,正确的命题个数为()①函数的定义域为;②已知命题,则命题的否定为:;③已知是定义在[0,1]的函数,那么“函数在[0,1]上单调递减”是“函数在[0,1]上的最小值为f(1)”的必要不充分条件;④被称为“天津之眼”的天津永乐桥摩天轮,是一座跨河建造、桥轮合一的摩天轮假设“天津之眼”旋转一周需30分钟,且是匀速转动的,则经过5分钟,转过的角的弧度A.1 B.2C.3 D.45.满足不等式成立的的取值集合为()A.B.C.D.6.下列函数为奇函数的是A. B.C. D.7.已知函数在区间上有且只有一个零点,则正实数的取值范围是()A. B.C. D.8.已知x,,且,则A. B.C. D.9.四个函数:①;②;③;④的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()A.④①②③ B.①④②③C.③④②① D.①④③②10.如图,在四面体ABCD中,E,F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为()A.90° B.45°C.60° D.30°二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为__________12.已知,且,若不等式恒成立,则实数的最大值是__________.13.已知正实数满足,则当__________时,的最小值是__________14.已知a,b,c是空间中的三条直线,α是空间中的一个平面①若a⊥c,b⊥c,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥α,b⊥α,则a⊥b;④若a∥b,a∥α,则b∥α;说法正确的序号是______15.设是定义在区间上的严格增函数.若,则a的取值范围是______16.若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数与.(1)判断的奇偶性;(2)若函数有且只有一个零点,求实数a的取值范围.18.已知函数的定义域为集合,关于的不等式的解集为,若,求实数的取值范围19.计算下列各式的值(1)(2)20.已知二次函数的图象关于直线对称,且关于的方程有两个相等的实数根.(1)的值域;(2)若函数且在上有最小值,最大值,求的值.21.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据条件可得函数f(x)的图象关于直线x=1对称;根据函数的解析式及奇偶性,对称性可得出函数f(x)在的图象;令,画出其图象,进而得出函数的图象.根据函数图象及其对称性,中点坐标公式即可得出结论【题目详解】因为定义在R上的偶函数f(x)满足,所以函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,,可以得出函数f(x)在上的图象,进而得出函数f(x)在的图象.画出函数,的图象;令,可得周期T1,画出其图象,进而得出函数的图象由图象可得:函数在区间上共有10个零点,即5对零点,每对零点的中点都为1,所以所有零点的和为.故选:A2、D【解题分析】利用同角三角函数关系式可求,再应用和角正切公式即求.【题目详解】∵,,∴,,∴.故选:D.3、D【解题分析】根据是锐角求出的取值范围,进而得出答案【题目详解】因为是锐角,所以,故故选D.【题目点拨】本题考查象限角,属于简单题4、B【解题分析】对于①,求出函数的定义域即可判断;对于②,根据全称量词命题的否定为存在量词命题即可判断;对于③,根据充分条件和必要条件的定义,举出反例即可判断;对于④,计算出经过5分钟,转过的角的弧度即可判断.【题目详解】解:对于①,由,得,解得且,所以函数的定义域为,故①正确;对于②,命题,的否定为:,故②错误;对于③,若函数在[0,1]上单调递减,则函数在[0,1]上的最小值为f(1),若函数在[0,1]上的最小值为f(1),无法得出函数在[0,1]上单调递减,例如,函数在[0,1]上不单调,且函数在[0,1]上的最小值为f(1),所以“函数在[0,1]上单调递减”是“函数在[0,1]上的最小值为f(1)”的充分不必要条件,故③错误;对于④,根据题意经过5分钟,转过的角的弧度为,故④正确,所以正确的个数为2个.故选:B.5、A【解题分析】先求出一个周期内不等式的解集,再结合余弦函数的周期性即可求解.【题目详解】解:由得:当时,因为的周期为所以不等式的解集为故选:A.6、D【解题分析】函数是非奇非偶函数;和是偶函数;是奇函数,故选D考点:函数的奇偶性7、D【解题分析】将零点个数问题转化为两个函数图象的交点个数问题,通过对参数讨论作图可解.【题目详解】在区间上有且只有一个零点在区间上有且只有一个解,即在区间上有且只有一个解令,,当,即时,因为在上单调递减,在上单调递增且,,由图1知,此时函数与在上只有一个交点;当,即时,因为,所以要使函数与在上有且只有一个交点,由图2知,即,解得或(舍去).综上,的取值范围为.故选:D8、C【解题分析】原不等式变形为,由函数单调递增,可得,利用指数函数、对数函数、幂函数的单调性逐一分析四个选项即可得答案【题目详解】函数为增函数,,即,可得,由指数函数、对数函数、幂函数的单调性可得,B,D错误,根据递增可得C正确,故选C【题目点拨】本题考查指数函数、对数函数、幂函数的单调性,是中档题.函数单调性的应用比较广泛,是每年高考的重点和热点内容.归纳起来,常见的命题探究角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小;(3)解函数不等式;(4)求参数的取值范围或值9、B【解题分析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到【题目详解】解:①为偶函数,它的图象关于轴对称,故第一个图象即是;②为奇函数,它的图象关于原点对称,它在上的值为正数,在上的值为负数,故第三个图象满足;③为奇函数,当时,,故第四个图象满足;④,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选:B【题目点拨】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.10、D【解题分析】设G为AD的中点,连接GF,GE,由三角形中位线定理可得,,则∠GFE即为EF与CD所成的角,结合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函数即可得到答案.【题目详解】解:设G为AD的中点,连接GF,GE则GF,GE分别为△ABD,△ACD的中线.∴,且,,且,则EF与CD所成角的度数等于EF与GE所成角的度数又EF⊥AB,∴EF⊥GF则△GEF为直角三角形,GF=1,GE=2,∠GFE=90°∴在直角△GEF中,∴∠GEF=30°故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】所以,当,即时,取得最小值.所以答案应填:.考点:1、对数的运算;2、二次函数的最值.12、9【解题分析】利用求的最小值即可.【题目详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.13、①.②.6【解题分析】利用基本不等式可知,当且仅当“”时取等号.而运用基本不等式后,结合二次函数的性质可知恰在时取得最小值,由此得解.【题目详解】解:由题意可知:,即,当且仅当“”时取等号,,当且仅当“”时取等号.故答案为:,6.【题目点拨】本题考查基本不等式的应用,同时也考查了配方法及二次函数的图像及性质,属于基础题.14、③【解题分析】根据空间线面位置关系的定义,性质判断或举反例说明【题目详解】对于①,若a,b为平面α的直线,c⊥α,则a⊥c,b⊥c,但a∥b不一定成立,故①错误;对于②,若a∥α,b∥α,则a,b的关系不确定,故②错误;对于③,不妨设a在α上的射影为a′,则a′⊂α,a∥a′,由b⊥α可得b⊥a′,于是a⊥b,故③正确;对于④,若b⊂α,显然结论不成立,故④错误.故答案为③【题目点拨】本题考查了空间线面位置关系的判断,属于中档题,15、.【解题分析】根据题意,列出不等式组,即可求解.【题目详解】由题意,函数是定义在区间上的严格增函数,因为,可得,解得,所以实数a的取值范围是.故答案为:.16、【解题分析】根据指对互化,指数幂的运算性质,以及指数函数的单调性即可解出【题目详解】由得,即,解得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)偶函数(2)【解题分析】(1)根据奇偶性定义判断;(2)函数只有一个零点,转化为方程只有一个根,用换元法转化为二次方程只有一个正根(或两个相等正根),再根据二次方程根分布分类讨论可得小问1详解】∵的定义域为R,∴,∴为偶函数.【小问2详解】函数只有一个零点即即方程有且只有一个实根.令,则方程有且只有一个正根.①当时,,不合题意;②当时,若方程有两相等正根,则,且,解得;满足题意③若方程有一个正根和一个负根,则,即时,满足题意.∴实数a的取值范围为.18、.【解题分析】对数真数大于零,所以,解得.为增函数,所以.由于是的子集,所以.试题解析:要使有意义,则,解得,即由,解得,即∴解得故实数的取值范围是考点:分式不等式,子集的概念.【方法点晴】注意一元二次方程、二次函数、二次不等式的联系,解二次不等式应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;当时,需要计算相应二次方程的根,其解集是用根表示,对于含参数的二次不等式,需要针对开口方向、判别式的符号、根的大小分类讨论.解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.分式不等式转化为一元二次不等式来求解.19、(1);(2)1.【解题分析】(1)利用指数幂的运算法则、对数恒等式及对数运算性质,化简计算即得;(2)利用同角关系式、辅助角公式可得原式,再利用诱导公式及二倍角公式,化简计算即得.【小问1详解】原式;【小问2详解】原式.20、(1)(2)或【解题分析】(1)由题意可得且,从而可求出的值,则得,然后求出的值域,进而可求出的值域,(2)函数,设,则,然后分和两种情况求的最值,列方程可求出的值【小问1详解】根据题意,二次函数的图象关于直线对称,则有,即,①又由方程即有两个相等的实数根,则有,②联立①②可得:,,则,则有,则,即函数的值域为;【小问2详解】根据题意,函数,设,则,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,综合可得:或21、(1)(2)这样规定公平,详见解析【解题分析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度股权转让合同:双诚公司对目标公司的股权投资3篇
- 2024版学校教学楼修建贷款合同3篇
- 2024年度装修工程融资合同3篇
- 2024年森林资源保护承包树木种植与管护服务合同3篇
- 2024版大豆产业政策研究与应对策略合同3篇
- 2024年借款方股权抵押还款协议3篇
- 2024全新网络借贷平台合作协议书3篇
- 2024年物业服务合同的履行与监管2篇
- 2024年度大理石工艺品委托研发与生产合同3篇
- 2024年企业员工劳动合同签订与员工绩效考核协议3篇
- 追觅科技在线测评题
- 《实践是检验真理的唯一标准》名师教学课件
- 2024内蒙古财经大学辅导员公开招聘(列编招聘)3人及历年高频难、易错点500题模拟试题附带答案详解
- 车站信号工高级题库
- 2024儿童青少年抑郁治疗与康复痛点调研报告
- 云南省保山市(2024年-2025年小学三年级语文)人教版期末考试(上学期)试卷(含答案)
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-下(多选、判断题)
- 在奉献中成就精彩人生 课件-2024-2025学年统编版道德与法治七年级上册
- 邮轮运营管理 课件 第七章 邮轮安全管理的全面解析
- 公园保洁服务投标方案
- 2024年高考英语作文预测:倡议书(附答案解析)
评论
0/150
提交评论