2024届吉林省白城市通榆一中高一数学第一学期期末质量检测模拟试题含解析_第1页
2024届吉林省白城市通榆一中高一数学第一学期期末质量检测模拟试题含解析_第2页
2024届吉林省白城市通榆一中高一数学第一学期期末质量检测模拟试题含解析_第3页
2024届吉林省白城市通榆一中高一数学第一学期期末质量检测模拟试题含解析_第4页
2024届吉林省白城市通榆一中高一数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省白城市通榆一中高一数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,将角的终边按顺时针方向旋转后经过点,则()A. B.C. D.2.已知集合A={x|-1≤x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}3.已知函数,若函数有4个零点,则的取值范围为()A. B.C. D.4.如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角()A.90° B.60°C.45° D.30°5.若,分别是方程,的解,则关于的方程的解的个数是()A B.C. D.6.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.7.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则8.关于的方程的实数根的个数为()A.6 B.4C.3 D.29.函数(,且)的图象必过定点A. B.C. D.10.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则__________12.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.13.已知函数,若存在,使得f()=g(),则实数a的取值范围为___14.已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于__________15.已知定义在区间上的奇函数满足:,且当时,,则____________.16.经过原点并且与直线相切于点的圆的标准方程是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程.18.已知函数,其图像过点,相邻两条对称轴之间的距离为(1)求函数的解析式;(2)将函数的图像上每一点的横坐标伸长到原来的2倍,纵坐标保持不变,得到函数的图像,若方程在上有两个不相等的实数解,求实数m的取值范围19.已知函数是偶函数.(1)求实数的值;(2)当时,函数存在零点,求实数的取值范围;(3)设函数,若函数与的图像只有一个公共点,求实数的取值范围.20.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼的覆盖面积为,凤眼莲的覆盖面积y(单位:)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适并说明理由,求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:)21.2009年某市某地段商业用地价格为每亩60万元,由于土地价格持续上涨,到2021年已经上涨到每亩120万元.现给出两种地价增长方式,其中是按直线上升的地价,是按对数增长的地价,t是2009年以来经过的年数,2009年对应的t值为0(1)求,的解析式;(2)2021年开始,国家出台“稳定土地价格”的相关调控政策,为此,该市要求2025年的地价相对于2021年上涨幅度控制在10%以内,请分析比较以上两种增长方式,确定出最合适的一种模型.(参考数据:)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据角的旋转与三角函数定义得,利用两角和的正切公式求得,然后待求式由二倍公式,“1”的代换,变成二次齐次式,转化为的式子,再计算可得【题目详解】解:将角的终边按顺时针方向旋转后所得的角为,因为旋转后的终边过点,所以,所以.所以.故选:A2、C【解题分析】利用交集定义直接求解【题目详解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故选:C3、C【解题分析】转化为两个函数交点问题分析【题目详解】即分别画出和的函数图像,则两图像有4个交点所以,即故选:C4、B【解题分析】将原图还原到正方体中,连接SC,AS,可确定(或其补角)是PB与AC所成的角.【题目详解】因为ABCD为正方形,PA⊥平面ABCD,PA=AB,可将原图还原到正方体中,连接SC,AS,则PB平行于SC,如图所示.∴(或其补角)是PB与AC所成的角,∵为正三角形,∴,∴PB与AC所成角为.故选:B.5、B【解题分析】∵,分别是方程,的解,∴,,∴,,作函数与的图象如下:结合图象可以知道,有且仅有一个交点,故,即分类讨论:()当时,方程可化为,计算得出,()当时,方程可化,计算得出,;故关于的方程的解的个数是,本题选择B选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围6、D【解题分析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误7、D【解题分析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【题目详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【题目点拨】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力8、D【解题分析】转化为求或的实根个数之和,再构造函数可求解.【题目详解】因为,所以,所以,所以或,令,则或,因为为增函数,且的值域为,所以和都有且只有一个实根,且两个实根不相等,所以原方程的实根的个数为.故选:D9、C【解题分析】因为函数,且有(且),令,则,,所以函数的图象经过点.故选:C.【题目点拨】本题主要考查对数函数(且)恒过定点,属于基础题目.10、B【解题分析】根据充分必要性分别判断即可.【题目详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】12、【解题分析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【题目详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.13、【解题分析】先求出的值域,再求出的值域,利用和得到不等式组求解即可.【题目详解】因为,所以,故,即因为,依题意得,解得故答案为:.14、4π【解题分析】设点的坐标为(则,即(以点的轨迹是以为圆心,2为半径的圆,所以点的轨迹所包围的图形的面积等于4π.即答案为4π15、【解题分析】由函数已知的奇偶性可得、,再由对称性进而可得周期性得解.【题目详解】因为在区间上是奇函数,所以,,,得,因为,,所以的周期为..故答案为:.16、【解题分析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0【解题分析】如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线由两点式可得直线A′B的方程为,即2x+y-4=0.同理,点B关于x轴的对称点为B′(-1,-6),由两点式可得直线AB′的方程为,即2x-y-4=0,∴入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0.考点:两点式直线方程,对称问题.18、(1);(2).【解题分析】(1)根据给定条件依次计算出,即可作答.(2)由(1)求出函数的解析式,再探讨在上的性质,结合图象即可作答.【小问1详解】因图像的相邻两条对称轴之间的距离为,则周期,解得,又,即,而,即,则,即,所以函数的解析式.【小问2详解】依题意,,当时,,而函数在上递增,在上递减,由得,由得,因此,函数在上单调递增,函数值从增到2,在上单调递减,函数值从2减到1,又是图象的一条对称轴,直线与函数在上的图象有两个公共点,当且仅当,如图,于是得方程在上有两个不相等的实数解时,当且仅当,所以实数m的取值范围.19、(1)(2)(3)【解题分析】(1)函数是偶函数,所以得出值检验即可;(2),因为时,存在零点,即关于的方程有解,求出的值域即可;(3)因为函数与的图像只有一个公共点,所以关于的方程有且只有一个解,所以,换元,研究二次函数图象及性质即可得出实数的取值范围.【小问1详解】解:因为是上偶函数,所以,即解得,此时,则是偶函数,满足题意,所以.【小问2详解】解:因为,所以因为时,存在零点,即关于的方程有解,令,则因为,所以,所以,所以,实数的取值范围是.【小问3详解】因为函数与的图像只有一个公共点,所以关于的方程有且只有一个解,所以令,得…(*),记,①当时,函数图像开口向上,又因为图像恒过点,方程(*)有一正一负两实根,所以符合题意;②当时,因为,所以只需,解得,方程(*)有两个相等的正实根,所以满足题意,综上,的取值范围是.20、(1)理由见解析,函数模型为;(2)六月份.【解题分析】(1)由凤眼莲在湖中的蔓延速度越来越快,故选符合要求,根据数据时,时代入即可得解;(2)首先求时,可得元旦放入凤眼莲的覆盖面积是,解不等式即可得解.【题目详解】(1)两个函数与在上都是增函数,随着的增加,指数型函数的值增加速度越来越快,而函数的值增加越来越慢,由凤眼莲在湖中的蔓延速度越来越快,故选符合要求;由时,由时,可得,解得,故该函数模型的解析式为;(2)当时,,元放入凤眼莲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论