




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省晋中市祁县二中高一数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在同一直角坐标系中,函数的图像可能是()A. B.C. D.2.已知两个正实数,满足,则的最小值是()A. B.C.8 D.33.已知函数y=log2(x2-2kx+k)的值域为R,则k的取值范围是()A.0<k<1 B.0≤k<1C.k≤0或k≥1 D.k=0或k≥14.已知,且,则的最小值为()A.3 B.4C.6 D.95.设,且,则()A. B.C. D.6.设,其中、是正实数,且,,则与的大小关系是()A. B.C. D.7.当时,函数和的图像只可能是()A. B.C. D.8.已知函数是定义在上的奇函数,当时,,则不等式的解集为()A. B.C.( D.9.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.10.函数的定义域为A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,根据垃圾分类要求,下述格点为垃圾回收点:,,,,,.请确定一个格点(除回收点外)___________为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.12.已知函数的零点为,则,则______13.在平面内将点绕原点按逆时针方向旋转,得到点,则点的坐标为__________14.已知,则的最小值为_______________.15.已知向量,且,则_______.16.已知点,,则以线段为直径的圆的标准方程是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于x的不等式:a(1)当a=-2时,解此不等式;(2)当a>0时,解此不等式18.已知函数,,当时,恒有(1)求的表达式及定义域;(2)若方程有解,求实数的取值范围;(3)若方程的解集为,求实数的取值范围19.已知函数的图象相邻两条对称轴之间的距离为.(1)当时,求函数的最大值和最小值;(2)将函数的图象向左平移个单位后得到函数的图象,若为偶函数,求的值.20.汽车智能辅助驾驶已开始得到应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并集合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为,,,,如下图所示.当车速为(米/秒),且时,通过大数据统计分析得到下表给出的数据(其中系数随地面湿滑程度等路面情况而变化,)阶段0.准备1.人的反应2.系统反应3.制动时间秒秒距离米米(1)请写出报警距离(米)与车速(米/秒)之间的函数关系式;并求当,在汽车达到报警距离时,若人和系统均未采取任何制动措施,仍以此速度行驶的情况下,汽车撞上固定障碍物的最短时间(精确到0.1秒);(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在多少千米/小时?21.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】通过分析幂函数和对数函数的特征可得解.【题目详解】函数,与,答案A没有幂函数图像,答案B.中,中,不符合,答案C中,中,不符合,答案D中,中,符合,故选D.【题目点拨】本题主要考查了幂函数和对数函数的图像特征,属于基础题.2、A【解题分析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【题目详解】因为正实数满足,则,当且仅当,即时,等号成立.故选:【题目点拨】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3、C【解题分析】根据对数函数值域为R的条件,可知真数可以取大于0的所有值,因而二次函数判别式大于0,即可求得k的取值范围【题目详解】因为函数y=log2(x2-2kx+k)的值域为R所以解不等式得k≤0或k≥1所以选C【题目点拨】本题考查了对数函数的性质,注意定义域为R与值域为R是不同的解题方法,属于中档题4、A【解题分析】将变形为,再将变形为,整理后利用基本不等式可求最小值.【题目详解】因为,故,故,当且仅当时等号成立,故的最小值为3.故选:A.【题目点拨】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.5、C【解题分析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【题目详解】即故选:C【题目点拨】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.6、B【解题分析】利用基本不等式结合二次函数的基本性质可得出与的大小关系.【题目详解】因为、是正实数,且,则,,因此,.故选:B.7、A【解题分析】由一次函数的图像判断出a、b的符号,结合指数函数的图像一一进行判断可得答案.【题目详解】解:A项,由一次函数的图像可知此时函数为减函数,故A项正确;B项,由一次函数的图像可知此时函数为增函数,故B项错误;C项,由一次函数的图像可知,此时函数为的直线,故C项错误;D项,由一次函数的图像可知,,此时函数为增函数,故D项错误;故选A.【题目点拨】本题主要考查指数函数的图像特征,相对简单,由直线得出a、b的范围对指数函数进行判断是解题的关键.8、C【解题分析】根据奇偶性求分段函数的解析式,然后作出函数图象,根据单调性解不等式即可.【题目详解】因为当时,,且函数是定义在上的奇函数,所以时,,所以,作出函数图象:所以函数是上的单调递增,又因为不等式,所以,即,故选:C.9、C【解题分析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【题目详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.10、C【解题分析】要使得有意义,要满足真数大于0,且分母不能为0,即可求出定义域.【题目详解】要使得有意义,则要满足,解得.答案为C.【题目点拨】常见的定义域求解要满足:(1)分式:分母0;(2)偶次根式:被开方数0;(3)0次幂:底数0;(4)对数式:真数,底数且;(5):;二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据题意,设满足题意得格点为,这6个回收点沿街道到回收站之间路程的和为,故,再分别求和的最小值时的即可得答案.【题目详解】解:设满足题意得格点为,这6个回收点沿街道到回收站之间路程和为,则,令,由于其去掉绝对值为一次函数,故其最小值在区间端点值,所以代入得,所以当时,取得最小值,同理,令,代入得所以当或时,取得最小值,所以当,或时,这6个回收点沿街道到回收站之间路程的和最小,由于是一个回收点,故舍去,所以当,这6个回收点沿街道到回收站之间路程的和最小,故格点为故答案为:12、2【解题分析】根据函数的单调性及零点存在定理即得.【题目详解】∵函数,函数在上单调递增,又,∴,即.故答案为:2.13、【解题分析】由条件可得与x轴正向的夹角为,故与x轴正向的夹角为设点B的坐标为,则,,∴点的坐标为答案:14、##225【解题分析】利用基本不等式中“1”的妙用即可求解.【题目详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.15、2【解题分析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.16、【解题分析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1){x|x<-12(2)当a=13时,解集为∅;当0<a<13时,解集为{x|3<x<【解题分析】(1)利用一元二次不等式的解法解出即可;(2)不等式可变形为(x-3)(x-1a)<0,然后分a=13、0<a<13、a>【小问1详解】当a=-2时,不等式-2x2+5x+3<0整理得(2x+1)(x-3)>0,解得x<-12或x>3当a=-2时,原不等式解集为{x|x<-12或x>【小问2详解】当a>0时,不等式ax2-(3a+1)x+3<0整理得:(x-3)(x-1a)<0当a=13时,1a=当0<a<13时,1a>3,解得3<x<当a>13时,1a<3,解得1a<x综上:当a=13时,解集为当0<a<13时,解集为{x|3<x<1a当a>13时,解集为{x|1a<x18、(1),;(2);(3)【解题分析】(1)由已知中函数,,当时,恒有,我们可以构造一个关于方程组,解方程组求出的值,进而得到的表达式;(2)转化为,解得,可求出满足条件的实数的取值范围.(3)根据对数的运算性质,转化为一个关于的分式方程组,进而根据方程的解集为,则方程组至少一个方程无解或两个方程的解集的交集为空集,分类讨论后,即可得到答案.【题目详解】(1)∵当时,,即,即,整理得恒成立,∴,又,即,从而∴,∵,∴,或,∴的定义域为(2)方程有解,即,∴,∴,∴,∴,或,解得或,∴实数的取值范围(3)方程的解集为,∴,∴,∴,方程的解集为,故有两种情况:①方程无解,即,得,②方程有解,两根均在内,,则解得综合①②得实数的取值范围是【题目点拨】关键点点睛:函数与方程、对数函数的单调性解不等式以及一元二次方程根的分布,综合性比较强,根据转化思想,不断转化是解题的关键,考查了分类讨论的思想,属于难题.19、(1)(2)【解题分析】(1)根据题意可得,从而可求得,再根据正弦函数的性质结合整体思想即可得出答案;(2)求出平移后的函数的解析式,再根据正余弦函数的奇偶性即可得出答案.【小问1详解】解:因为函数的图象相邻两条对称轴之间的距离为,所以,所以,所以,所以,当时,,所以当时,函数取得最小值,当时,函数取得最大值,所以;【小问2详解】解:函数的图象向左平移个单位后,得到函数,因为为偶函数,所以,所以,又因为,所以.20、(1);2.4秒;(2)72(千米/小时)【解题分析】(1)由图,分别计算出报警时间、人的反应时间、系统反应时间、制动时间,相应的距离,,,,代入中即可,,利用基本不等式求最值;(2)将问题转化为对于任意,恒成立,利用分离参数求范围即可.【题目详解】(1)由题意得,所以当时,,(秒)即此种情况下汽车撞上固定障碍物的最短时间约为2.4秒(2)根据题意要求对于任意,恒成立,即对于任意,,即恒成立,由,得所以,即,解得所以,(千米/小时)21、(1)增区间是[kπ-,kπ+],k∈Z(2)【解题分析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小自考视觉传播设计内容创作灵感来源及试题及答案
- 2024年小自考产品组合策略试题及答案
- 2025至2030年中国中国花生市场现状分析及前景预测报告
- 2025至2030年中国丙烯酸-2-乙基己酯市场现状分析及前景预测报告
- 统计师考试细节决定成败的分析试题及答案
- 收纳师考试题及答案
- 小自考视觉传播设计核心内容试题及答案
- 食品安全科研的前沿领域与技术进展 试题及答案
- 8大家的“朋友”(教案)-部编版道德与法治三年级下册
- 元宇宙概念对设计的影响试题及答案
- 药剂科培训课件:《医院特殊药品管理》
- 村级公墓规划设计方案
- 山东省济南市(2024年-2025年小学六年级语文)统编版小升初真题(下学期)试卷及答案
- 2024年7月国家开放大学法律事务专科《民法学(2)》期末纸质考试试题及答案
- 中央戏剧学院招聘笔试真题2023
- 2021年高级经济师《高级经济实务》建筑与房地产经济专业考试题库及答案解析
- 人教版高中物理选择性必修第三册第五章原子核第2节放射性元素的衰变课件
- 40万只全现代化蛋鸡养殖场项目可行性研究报告写作模板-申批备案
- 20起典型火灾事故案例合集-2024年消防月专题培训
- 拼多多在线测评98道题
- 环境监测站运行管理与质量控制标准
评论
0/150
提交评论