江西省重点中学2024届高一上数学期末联考试题含解析_第1页
江西省重点中学2024届高一上数学期末联考试题含解析_第2页
江西省重点中学2024届高一上数学期末联考试题含解析_第3页
江西省重点中学2024届高一上数学期末联考试题含解析_第4页
江西省重点中学2024届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省重点中学2024届高一上数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若在上单调递减,则的取值范围是().A. B.C. D.2.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.3.函数是上的偶函数,则的值是A. B.C. D.4.是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B.C. D.5.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B.C. D.6.已知,则()A. B.1C. D.27.若函数,则的单调递增区间为()A. B.C. D.8.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.9.若函数在闭区间上有最大值5,最小值1,则的取值范围是()A. B.C. D.10.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知与是两个不共线的向量,且向量(+λ)与(-3)共线,则λ的值为_____.12.已知,且,则______.13.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______14.已知幂函数是奇函数,则___________.15.已知向量,写出一个与共线的非零向量的坐标__________.16.数据的第50百分位数是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)若函数f(x)的图象过点(1,1),求不等式f(x)<1的解集;(2)若函数只有一个零点,求实数a的取值范围18.求值:(1)(2)已知,求的值19.已知全集,集合,(1)求,;(2)若,,求实数m的取值范围.20.计算下列各式的值:(I);(Ⅱ)log327+lg25+1g4+log42.21.已知二次函数.(1)若在的最大值为5,求的值;(2)当时,若对任意实数,总存在,使得.求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【题目详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【题目点拨】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.2、A【解题分析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【题目详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【题目点拨】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目3、C【解题分析】分析:由奇偶性可得,化为,从而可得结果.详解:∵是上的偶函数,则,即,即成立,∴,又∵,∴.故选C点睛:本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.4、B【解题分析】设,,∴,,,∴.【考点】向量数量积【名师点睛】研究向量的数量积问题,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简.平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是将“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来5、D【解题分析】根据三视图还原该几何体,然后可算出答案.【题目详解】由三视图可知该几何体是半径为1的球和底面半径为1,高为3的圆柱的组合体,故其表面积为球的表面积与圆柱的表面积之和,即故选:D6、D【解题分析】根据指数和对数的关系,将指数式化为对数式,再根据换底公式及对数的运算法则计算可得;【题目详解】解:,,,,故选:D7、A【解题分析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【题目详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.8、A【解题分析】利用角速度先求出时,的值,然后利用单调性进行判断即可【题目详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A9、D【解题分析】数形结合:根据所给函数作出其草图,借助图象即可求得答案【题目详解】,令,即,解得或,,作出函数图象如下图所示:因为函数在闭区间上有最大值5,最小值1,所以由图象可知,故选:D【题目点拨】本题考查二次函数在闭区间上的最值问题,考查数形结合思想,深刻理解“三个二次”间的关系是解决该类问题的关键10、B【解题分析】构造函数,通过表格判断,判断零点所在区间,即得结果.【题目详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、-【解题分析】由向量共线可得+λ=k((-3),计算即可.【题目详解】由向量共线可得+λ=k((-3),即+λ=k-3k,∴解得λ=-.故答案为:-12、##【解题分析】化简已知条件,求得,通过两边平方的方法求得,进而求得.【题目详解】依题意,①,,,化简得①,则,由,得,,.故答案为:13、【解题分析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【题目详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【题目点拨】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.14、1【解题分析】根据幂函数定义可构造方程求得,将的值代入解析式验证函数奇偶性可确定结果.【题目详解】由题意得,∴或1,当时,是偶函数;当时,是奇函数.故答案为:1.15、(纵坐标为横坐标2倍即可,答案不唯一)【解题分析】向量与共线的非零向量的坐标纵坐标为横坐标2倍,例如(2,4)故答案为16、16【解题分析】第50百分位数为数据的中位数,即得.【题目详解】数据的第50百分位数,即为数据的中位数为.故答案为:16.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(-1,1)(2)a≥0或【解题分析】(1)将点(1,1)代入函数解析式中可求出的值,然后根据对数函数的单调性解不等式即可,(2)将问题转化为只有一解,再转化为关于x的方程ax2+x=1只有一个正根,然后分和分析求解【小问1详解】∵函数的图象过点(1,1),,解得此时由f(x)<1,得,解得故f(x)<1的解集为(-1,1)【小问2详解】∵函数只有一个零点,只有一解,将代入ax+1>0,得x>0,∴关于x的方程ax2+x=1只有一个正根当a=0时,x=1,满足题意;当a≠0时,若ax2+x-1=0有两个相等的实数根,由,解得,此时x=2,满足题意;若方程ax2+x-1=0有两个相异实数根,则两根之和与积均为,所以方程两根只能异号,所以,a>0,此时方程有一个正根,满足题意综上,a≥0或18、(1)0;(2)【解题分析】(1)由指数幂的运算性质及对数的运算性质可求解;(2)由诱导公式即同角三角函数关系可求解.【题目详解】(1)原式;(2)原式.19、(1),或(2)【解题分析】(1)首先解指数不等式求出集合,再根据交集、并集、补集的定义计算可得;(2)依题意可得,即可得到不等式,解得即可;小问1详解】解:由,即,解得,所以,又,所以,或,所以或;【小问2详解】解:因为,所以,所以,解得,即;20、(I);(II).【解题分析】利用有理数指数幂,根式的运算性质及对数的运算性质对(Ⅰ)、(Ⅱ)、逐个运算即可.【题目详解】(Ⅰ)+()2+(-)0==2-3+2-2+1==;(Ⅱ)log327+lg25+1g4+log42==3+2lg5+2lg2+=3+2+=.【题目点拨】本题考查有理数指数幂,根式及对数的运算性质的化简求值,熟练掌握运算性质是关键,考查运算能力,属于基础题.21、(1)2;(2).【解题分析】(1)时,;当时,根据单调性可得答案;(2)依题意得,当、时,利用的单调性可得答案;当和时,结合图象和单调性可得答案.【题目详解】(1)当时,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论