2024届黑龙江省哈尔滨尚志中学数学高一上期末联考试题含解析_第1页
2024届黑龙江省哈尔滨尚志中学数学高一上期末联考试题含解析_第2页
2024届黑龙江省哈尔滨尚志中学数学高一上期末联考试题含解析_第3页
2024届黑龙江省哈尔滨尚志中学数学高一上期末联考试题含解析_第4页
2024届黑龙江省哈尔滨尚志中学数学高一上期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省哈尔滨尚志中学数学高一上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.C. D.2.给出下列四个命题:①底面是正多边形的棱柱是正棱柱;②四棱柱、四棱台、五棱锥都是六面体;③所有棱长相等的棱柱一定是直棱柱;④直角三角形绕其一条边所在的直线旋转一周形成的几何体是圆锥其中正确的命题个数是()A.0 B.1C.2 D.33.已知x,y满足,求的最小值为()A.2 B.C.8 D.4.已知函数,记集合,,若,则的取值范围是()A.[0,4] B.(0,4)C.[0,4) D.(0,4]5.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.6.已知,则等于()A.1 B.2C.3 D.67.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.8.“密位制”是用于航海方面的一种度量角的方法,我国采用的“密位制”是密位制,即将一个圆周角分为等份,每一个等份是一个密位,那么密位对应弧度为()A. B.C. D.9.下列集合与集合相等的是()A. B.C. D.10.函数的图像的一个对称中心是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.求值:___________.12.某校高中三个年级共有学生2000人,其中高一年级有学生750人,高二年级有学生650人.为了了解学生参加整本书阅读活动的情况,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么在高三年级的学生中应抽取的人数为___________.13.已知不等式的解集是__________.14.不等式的解集是__________15.关于函数与有下面三个结论:①函数的图像可由函数的图像平移得到②函数与函数在上均单调递减③若直线与这两个函数的图像分别交于不同的A,B两点,则其中全部正确结论的序号为____16.已知集合.(1)集合A的真子集的个数为___________;(2)若,则t的所有可能的取值构成的集合是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,且).(1)若,试比较与的大小,并说明理由;(2)若,且,,三点在函数的图像上,记的面积为,求的表达式,并求的值域.18.已知集合,.(1)当时,求;(2)若,求实数的取值范围.19.已知函数,.(1)求函数的定义域;(2)求不等式的解集.20.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时)21.已知函数,且最小正周期为.(1)求的单调增区间;(2)若关于的方程在上有且只有一个解,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积2、B【解题分析】利用几何体的结构特征,几何体的定义,逐项判断选项的正误即可【题目详解】解:①底面是正多边形,侧棱与底面垂直的棱柱是正棱柱;所以①不正确;②四棱柱、四棱台、五棱锥都是六面体;满足多面体的定义,所以②正确;③所有棱长相等的棱柱一定是直棱柱;不满足直棱柱的定义,所以③不正确;④直角三角形绕直角边所在的直线旋转一周形成的几何体是圆锥.所以④不正确;故选:B3、C【解题分析】利用两点间的距离公式结合点到直线的距离公式即可求解.【题目详解】解:表示点与直线上的点的距离的平方所以的最小值为点到直线的距离的平方所以最小值为:故选:C.4、C【解题分析】对分成和两种情况进行分类讨论,结合求得的取值范围.【题目详解】当时,,此时,符合题意.当时,,由解得或,由得或,其中,,和都不是这个方程的根,要使,则需.综上所述,的取值范围是.故选:C5、A【解题分析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【题目详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【题目点拨】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.6、A【解题分析】利用对数和指数互化,可得,,再利用即可求解.【题目详解】由得:,,所以,故选:A7、A【解题分析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【题目详解】设函数在上是增函数,解得故选:A【题目点拨】本题主要考查了由复合函数的单调性求参数范围,属于中档题.8、B【解题分析】根据弧度制公式即可求得结果【题目详解】密位对应弧度为故选:B9、C【解题分析】根据各选项对于的集合的代表元素,一一判断即可;【题目详解】解:集合,表示含有两个元素、的集合,对于A:,表示含有一个点的集合,故不相等;对于B:,表示的是点集,故不相等;对于C:,表示方程的解集,因为的解为,或,所以对于D:,故不相等故选:C10、C【解题分析】令,得,所以函数的图像的对称中心是,然后赋值即可【题目详解】因为的图像的对称中心为.由,得,所以函数的图像的对称中心是.令,得.【题目点拨】本题主要考查正切函数的对称性,属基础题二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】根据指数幂的运算性质,结合对数的运算性质进行求解即可.【题目详解】,故答案为:12、60【解题分析】求出高三年级的学生人数,再根据分层抽样的方法计算即可.【题目详解】高三年级有学生2000-750-650=600人,用分层抽样的方法从中抽取容量为200的样本,应抽取高三年级学生的人数为200×600故答案为:6013、【解题分析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:14、【解题分析】根据对数不等式解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集【题目详解】原不等式等价于,所以,解得,所以原不等式的解集为故答案为【题目点拨】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题15、①②##②①【解题分析】根据三角函数的平移法则和单调性知①②正确,取代入计算得到③错误,得到答案.【题目详解】向左平移个单位得到,①正确;函数在上单调递减,函数在上单调递减,②正确;取,则,,,③错误.故答案为:①②16、①.15②.【解题分析】(1)根据集合真子集的计算公式即可求解;(2)根据集合的包含关系即可求解.【题目详解】解:(1)集合A的真子集的个数为个,(2)因为,又,所以t可能的取值构成的集合为,故答案为:15;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时,;当时,;(2);【解题分析】(1)根据题意分别代入求出,再比较的大小,利用函数的单调性即可求解.(2)先表示出的表达式,再根据函数的单调性求的值域.【题目详解】解:(1)当时,在上单调递减;,,又,,故;同理可得:当时,在上单调递增;,,又,,故,综上所述:当时,;当时,;(2)由题意可知:,,,故在上单调递增;令,,当时,在上单调递增;故在上单调递减;故在上单调递减;故,故的值域为:.18、(1);(2).【解题分析】(1)求出集合A和B,根据并集的计算方法计算即可;(2)求出,分B为空集和不为空集讨论即可.【小问1详解】,当时,,∴;【小问2详解】{或x>4},当时,,,解得a<1;当时,若,则解得.综上,实数的取值范围为.19、(1)(2)答案见解析【解题分析】(1)根据对数的真数大于零可得出关于的不等式组,由此可解得函数的定义域;(2)将所求不等式变形为,分、两种情况讨论,利用对数函数的单调性结合函数的定义域可求得原不等式的解集.【小问1详解】解:,则有,解得,故函数的定义域为.【小问2详解】解:当时,函数在上为增函数,由,可得,所以,解得,此时不等式的解集为;当时,函数在上为减函数,由,可得,所以,解得,此时不等式的解集为.综上所述,当时,不等式的解集为;当时,不等式的解集为.20、(1)(2)3333辆/小时【解题分析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200]上取得最大值综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:(1)函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论