版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西宁市第四中学2024届数学高一上期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平行四边形中,若点满足,,设,则A. B.C. D.2.已知定义域为的函数满足:,且,当时,,则等于()A B.C.2 D.43.已知,若函数在上为减函数,且函数在上有最大值,则a的取值范围为()A. B.C. D.4.过点,且圆心在直线上的圆的方程是()A. B.C. D.5.若,则()A. B.C.或1 D.或6.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.47.若两直线与平行,则它们之间的距离为A. B.C. D.8.设,,,则,,的大小关系()A. B.C. D.9.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.10.若全集,且,则()A.或 B.或C. D.或.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是________________.12.若函数(,且)的图象经过点,则___________.13.无论实数k取何值,直线kx-y+2+2k=0恒过定点__14.在中,,则等于______15.已知函数,将函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位,得到函数的解析式______16.的值为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,为单位圆上一点,射线OA绕点O按逆时针方向旋转后交单位圆于点B,点B的纵坐标y关于的函数为.(1)求函数的解析式,并求;(2)若,求的值.18.设函数(且)是定义域为R的奇函数(Ⅰ)求t的值;(Ⅱ)若函数的图象过点,是否存在正数m,使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由19.已知函数(1)求的图象的对称轴的方程;(2)若关于的方程在上有两个不同的实数根,求实数的取值范围20.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面由扇形挖去扇形后构成的已知米,米,线段、线段与弧、弧的长度之和为米,圆心角为弧度(1)求关于的函数解析式;(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值21.某乡镇为了进行美丽乡村建设,规划在长为10千米的河流的一侧建一条观光带,观光带的前一部分为曲线段,设曲线段为函数,(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段,如图所示.(1)求曲线段对应的函数的解析式;(2)若计划在河流和观光带之间新建一个如图所示的矩形绿化带,绿化带由线段构成,其中点在线段上.当长为多少时,绿化带的总长度最长?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】画出平行四边形,在上取点,使得,在上取点,使得,由图中几何关系可得到,即可求出的值,进而可以得到答案【题目详解】画出平行四边形,在上取点,使得,在上取点,使得,则,故,,则.【题目点拨】本题考查了平面向量的线性运算,考查了平面向量基本定理的应用,考查了平行四边形的性质,属于中档题2、A【解题分析】根据函数的周期性以及奇偶性,结合已知函数解析式,代值计算即可.【题目详解】因为函数满足:,且,故是上周期为的偶函数,故,又当时,,则,故.故选:A.3、A【解题分析】由复合函数在上的单调性可构造不等式求得,结合已知可知;当时,,若,可知无最大值;若,可得到,解不等式,与的范围结合可求得结果.【题目详解】在上为减函数,解得:当时,,此时当,时,在上单调递增无最大值,不合题意当,时,在上单调递减若在上有最大值,解得:,又故选【题目点拨】本题考查根据复合函数单调性求解参数范围、根据分段函数有最值求解参数范围的问题;关键是能够通过分类讨论的方式得到处于不同范围时在区间内的单调性,进而根据函数有最值构造不等式;易错点是忽略对数真数大于零的要求,造成范围求解错误.4、B【解题分析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【题目详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B5、A【解题分析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【题目详解】由,两边平方得,或1,,.故选:A.【题目点拨】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.6、C【解题分析】将圆的方程化为标准方程即可得圆的半径.【题目详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【题目点拨】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.7、D【解题分析】根据两直线平行求得值,利用平行线间距离公式求解即可【题目详解】与平行,,即直线为,即故选D【题目点拨】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,8、A【解题分析】根据指数函数和对数函数的单调性比大小.【题目详解】由已知得,,且,,所以.故选:A.9、D【解题分析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【题目详解】,.图中阴影部分所表示的集合为且.故选:D.【题目点拨】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.10、D【解题分析】根据集合补集的概念及运算,准确计算,即可求解.【题目详解】由题意,全集,且,根据集合补集的概念及运算,可得或.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解题分析】根据题意由于有意义,则可知,结合正弦函数的性质可知,函数定义域,,,故可知答案为,,,考点:三角函数性质点评:主要是考查了三角函数的性质的运用,属于基础题12、【解题分析】把点的坐标代入函数的解析式,即可求出的值.【题目详解】因为函数的图象经过点,所以,解得.故答案为:.13、【解题分析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出无论实数k取何值,直线kx-y+2+2k=0恒过定点【题目详解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程组,得∴无论实数k取何值,直线kx-y+2+2k=0恒过定点故答案为:14、【解题分析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.15、【解题分析】根据三角函数图象的变换可得答案.【题目详解】将函数图象上各点的横坐标缩短到原来的倍,得,再将得到的图象向右平移个单位得故答案为:16、【解题分析】直接按照诱导公式转化计算即可【题目详解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案为:【题目点拨】本题考查诱导公式的应用:求值.一般采用“大角化小角,负角化正角”的思路进行转化三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】(1)由三角函数的定义得到,进而代入计算;(2)由已知得,将所求利用诱导公式转化即得.【题目详解】解:(1)因为,所以,由三角函数定义,得.所以.(2)因为,所以,所以.【题目点拨】本题考查三角函数的定义,三角函数性质,诱导公式.考查运算求解能力,推理论证能力.考查转化与化归,数形结合等数学思想.已知求时要将已知中角作为整体不分离,观察所求中的角与已知中的角的关系,利用诱导公式直接转化是化简求值的常见类型.18、(Ⅰ)t=2,(Ⅱ)不存在【解题分析】(Ⅰ)由题意f(0)=0,可求出t的值;(Ⅱ)假设存在正数符合题意,由函数的图象过点可得,得到的解析式,设,得到关于的解析式,然后对值进行讨论,看是否有满足条件的的值.【题目详解】解:(Ⅰ)因为f(x)是定义域为R的奇函数,∴f(0)=0,∴t=2,经检验符合题意,所以;(Ⅱ)假设存在正数符合题意,因为函数的图象过点,所以,解得,则,设,则,因为,所以,记,,函数在上的最大值为0,∴(ⅰ)若,则函数在有最小值为1,对称轴,∴,所以,故不合题意;(ⅱ)若,则函数在上恒成立,且最大值为1,最小值大于0,①,又此时,又,故无意义,所以应舍去;②,无解,综上所述:故不存在正数,使函数在上的最大值为019、(1),(2)【解题分析】(1)先将解析式化成正弦型函数,然后利用整体代换即可求得对称轴方程.(2)方程有两个不同的实数根转化成图像与有两个交点即可求得实数的取值范围【小问1详解】,由,,得,故的图象的对称轴方程为,【小问2详解】因为,当时,不满足题意;当时,可得.画出函数在上的图象,由图可知或,解得或.综上,实数a的取值范围为20、(1).(2)当时,取最大值.【解题分析】(1)根据弧长公式和周长列方程得出关于的函数解析式;(2)根据扇形面积公式求出关于的函数,从而得出的最大值.【小问1详解】解:根据题意,可算得弧,弧,,;【小问2详解】解:依据题意,可知,当时,.答:当米时铭牌的面积最大,且最大面积为平方米21、(1).(2)当OM长为1千米时,绿化带的总长度最长.【解题分析】(1)由题意首先求得a,b,c的值,然后分段确定函数的解析式即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新品类战略-玄机著
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)教案全套 易月娥 1-10 部署虚拟环境安装Windows Server 2022操作系统 - 网络地址转换
- 2024至2030年中国数显手动平面磨床行业投资前景及策略咨询研究报告
- 2024至2030年中国定轴式动力换档变速箱行业投资前景及策略咨询研究报告
- 2024年中国无碳卷筒纸市场调查研究报告
- 幼儿园生涯教育初步规划计划
- 职业生涯与个人价值的平衡计划
- 教师培训活动安排计划
- 超市进店合作协议书
- 教学督导与评估机制计划
- 《Vue 3基础入门》课件 第一章 vue 3简介
- 【7道人教版期中】安徽省合肥市琥珀中学+2023-2024学年七年级上学期11月期中道德与法治试题(含解析)
- GB/T 31486-2024电动汽车用动力蓄电池电性能要求及试验方法
- 口腔颌面部肿瘤概论(口腔颌面外科课件)
- (正式版)HG∕T 21633-2024 玻璃钢管和管件选用规定
- 《义务教育数学课程标准(2022年版)》测试题+答案
- 2024年网上大学智能云服务交付工程师认证考试题库800题(含答案)
- 心血管内科试题库+答案
- 数据安全重要数据风险评估报告
- 中华民族共同体概论课件专家版2第二讲 树立正确的中华民族历史观
- 运维质量管理体系及保障措施方案
评论
0/150
提交评论