广东省佛山市石门高级中学2024届高一上数学期末检测模拟试题含解析_第1页
广东省佛山市石门高级中学2024届高一上数学期末检测模拟试题含解析_第2页
广东省佛山市石门高级中学2024届高一上数学期末检测模拟试题含解析_第3页
广东省佛山市石门高级中学2024届高一上数学期末检测模拟试题含解析_第4页
广东省佛山市石门高级中学2024届高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市石门高级中学2024届高一上数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在下列给出的函数中,以为周期且在区间内是减函数的是()A. B.C. D.2.函数零点的个数为()A.4 B.3C.2 D.03.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.4.一条侧棱垂直于底面的三棱锥P﹣ABC的三视图不可能是()A.直角三角形B.等边三角形C.菱形D.顶角是90°的等腰三角形5.下列各组中的两个函数表示同一函数的是()A. B.y=lnx2,y=2lnxC D.6.已知角的终边经过点,则A. B.C.-2 D.7.直线的倾斜角A. B.C. D.8.设函数f(x)=若,则实数的取值范围是()A.B.C.D.9.已知,,,夹角为,如图所示,若,,且D为BC中点,则的长度为A. B.C.7 D.810.设定义在R上的函数满足,且,当时,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数则_______.12.若关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},则关于x的不等式cx2+bx+a>0的解集是______13.如果函数仅有一个零点,则实数的值为______14.已知函数的最大值与最小值之差为,则______15.给出下列命题:①函数是偶函数;②方程是函数的图象的一条对称轴方程;③在锐角中,;④函数的最小正周期为;⑤函数的对称中心是,,其中正确命题的序号是________.16.已知向量,其中,若,则的值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.(1)求,(2)若,求实数a的取值范围18.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a取值范围.19.已知直线经过点,且与直线垂直.(1)求直线的方程;(2)若直线与平行且点到直线的距离为,求直线的方程.20.函数的定义域且,对定义域D内任意两个实数,,都有成立(1)求的值并证明为偶函数;21.如图,函数(,)的图象与y轴交于点,最小正周期是π(1)求函数的解析式;(2)已知点,点P是函数图象上一点,点是线段PA中点,且,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】的最小正周期为,故A错;的最小正周期为,当时,,所以在上为减函数,故B对;的最小正周期为,当时,,所以在上为增函数,故C错;的最小正周期为,,所以在不单调.综上,选B.2、A【解题分析】由,得,则将函数零点的个数转化为图象的交点的个数,画出两函数的图象求解即可【题目详解】由,得,所以函数零点的个数等于图象的交点的个数,函数的图象如图所示,由图象可知两函数图象有4个交点,所以有4个零点,故选:A3、C【解题分析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【题目详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C4、C【解题分析】直接利用空间图形和三视图之间的转换的应用求出结果【题目详解】由于三棱锥P﹣ABC的一条侧棱垂直于底面,所以无论怎样摆放,该三视图都为三角形,不可能为菱形故选:C【题目点拨】本题考查三视图和几何体之间的转换,主要考查学生的空间想象能力,属于基础题5、D【解题分析】逐项判断函数的定义域与对应法则是否相同,即可得出结果.【题目详解】对于A,

定义域为,而定义域为,定义域相同,但对应法则不同,故不是同一函数,排除A;对于B,定义域,而定义域为,所以定义域不同,不是同一函数,排除B;对于C,

定义域为,而定义域为,所以定义域不同,不是同一函数,排除C;对于D,与的定义域均为,且,对应法则一致,所以是同一函数,D正确.故选:D6、B【解题分析】按三角函数的定义,有.7、A【解题分析】先求得直线的斜率,然后根据斜率和倾斜角的关系,求得.【题目详解】可得直线的斜率为,由斜率和倾斜角的关系可得,又∵∴故选:A.【题目点拨】本小题主要考查直线倾斜角与斜率,属于基础题.8、C【解题分析】由于的范围不确定,故应分和两种情况求解.【题目详解】当时,,由得,所以,可得:,当时,,由得,所以,即,即,综上可知:或.故选:C【题目点拨】本题主要考查了分段函数,解不等式的关键是对的范围讨论,分情况解,属于中档题.9、A【解题分析】AD为的中线,从而有,代入,根据长度进行数量积的运算便可得出的长度【题目详解】根据条件:;故选A【题目点拨】本题考查模长公式,向量加法、减法及数乘运算,向量数量积的运算及计算公式,根据公式计算是关键,是基础题.10、C【解题分析】结合函数的周期性和奇偶性可得,代入解析式即可得解.【题目详解】由,可得.,所以.由,可得.故选C.【题目点拨】本题主要考查了函数的周期性和奇偶性,着重考查了学生的转化和运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【题目详解】∵,,则∴.故答案为:.12、【解题分析】由条件可得a<0,且1+2=,1×2=.b=a>0,c=2a>0,可得要解得不等式即x2+x>0,由此求得它的解集【题目详解】∵关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},∴a<0,且1+2=,1×2=∴b=a>0,c=2a>0,∴=,=故关于x的不等式cx2+bx+a>0,即x2+x>0,即(x+1)(x)>0,故x<1或x>,故关于x的不等式cx2+bx+a>0的解集是,故答案为【题目点拨】本题主要考查一元二次不等式的解法,一元二次方程根与系数的关系,属于基础题13、【解题分析】利用即可得出.【题目详解】函数仅有一个零点,即方程只有1个根,,解得.故答案为:.14、或.【解题分析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【题目详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.15、①②③【解题分析】由诱导公式化简得函数,判断①正确;求出函数的图象的对称轴(),当时,,判断②正确;在锐角中,由化简得到,判断③正确;直接求出函数的最小正周期为,判断④错误;直接求出函数的对称中心是,判断⑤错误.【题目详解】①因为函数,所以函数是偶函数,故①正确;②因为函数,所以函数图象的对称轴(),即(),当时,,故②正确;③在锐角中,,即,所以,故③正确;④函数的最小正周期为,故④错误;⑤令,解得,所以函数的对称中心是,故⑤错误.故答案为:①②③【题目点拨】本题考查三角函数的图象与性质、诱导公式与三角恒等变换,是中档题.16、4【解题分析】利用向量共线定理即可得出【题目详解】∵∥,∴=8,解得,其中,故答案为【题目点拨】本题考查了向量共线定理,考查了向量的坐标运算,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2).【解题分析】(1)解不等式化简集合B,再利用交集、并集、补集的定义直接计算作答.(2)由已知可得,再利用集合的包含关系列式计算作答.【小问1详解】解得:,则,而,所以,或,.【小问2详解】,因,则,于是得,所以实数a的取值范围是.18、(1)..(2)【解题分析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论【题目详解】(1)因为,所以.函数的大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【题目点拨】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题19、(1);(2)直线方程为或.【解题分析】⑴利用相互垂直的直线斜率之间的关系求出直线的斜率,代入即可得到直线的方程;⑵由已知设直线的方程为,根据点到直线的距离公式求得或,即可得到直线的方程解析:(1)由题意直线的斜率为1,所求直线方程为,即.(2)由直线与直线平行,可设直线的方程为,由点到直线的距离公式得,即,解得或.∴所求直线方程为或.20、(1),证明见解析(2)(3)【解题分析】(1)取得到,取得到,取得到,得到答案.(2)证明函数在上单调递增,在上单调递减,得到,结合定义域得到答案.(3)根据函数单调性和奇偶性得到,考虑,,三种情况,得到函数的最值,解不等式得到答案.【小问1详解】取得到,得到,取得到,得到,取得到,即,故函数为偶函数.【小问2详解】设,则,,故,即,函数单调递减.函数为偶函数,故函数在上单调递增.,故,且,解得.【小问3详解】,根据(2)知:,,恒成立,故,,当时,,当时,,当时,,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论