新疆伊宁生产建设兵团第四师第一中学2024届高一上数学期末监测模拟试题含解析_第1页
新疆伊宁生产建设兵团第四师第一中学2024届高一上数学期末监测模拟试题含解析_第2页
新疆伊宁生产建设兵团第四师第一中学2024届高一上数学期末监测模拟试题含解析_第3页
新疆伊宁生产建设兵团第四师第一中学2024届高一上数学期末监测模拟试题含解析_第4页
新疆伊宁生产建设兵团第四师第一中学2024届高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆伊宁生产建设兵团第四师第一中学2024届高一上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的上单调递减,则的取值范围是()A. B.C. D.2.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.3.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A. B.C. D.4.如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,使得∠B′AC=60°.那么这个二面角大小是()A.30° B.60°C.90° D.120°5.已知函数,,则函数的值域为()A B.C. D.6.已知函数(其中)的图象如下图所示,则的图象是()A. B.C. D.7.在直角梯形中,,,,分别为,的中点,以为圆心,为半径的圆交于,点在弧上运动(如图).若,其中,,则的取值范围是A. B.C. D.8.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.9.下列四个函数,最小正周期是的是()A. B.C. D.10.若将函数图象向左平移个单位,则平移后的图象对称轴为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.12.已知半径为的扇形的面积为,周长为,则________13.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________14.函数y=的单调递增区间是____.15.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________16.已知幂函数在上为减函数,则实数_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,补充在(2)问中的横线上,并求解.若___________,求实数的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)18.已知,且,求的值19.已知.(1)若,,求x的值;(2)若,求的最大值和最小值.20.已知函数.(1)直接写出的单调区间,并选择一个单调区间根据定义进行证明;(2)解不等式.21.已知向量,,,,函数,的最小正周期为(1)求的单调增区间;(2)方程;在上有且只有一个解,求实数n的取值范围;(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【题目详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【题目点拨】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题2、D【解题分析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.3、B【解题分析】得到的偶函数解析式为,显然【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.4、C【解题分析】根据折的过程中不变的角的大小、结合二面角的定义进行判断即可.【题目详解】因为AD是等腰直角△ABC斜边BC上的高,所以,因此是二面角的平面角,∠B′AC=60°.所以是等边三角形,因此,在中.故选:C【题目点拨】本题考查了二面角的判断,考查了数学运算能力,属于基础题.5、B【解题分析】先判断函数的单调性,再利用单调性求解.【题目详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B6、A【解题分析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【题目详解】解:由图象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A7、D【解题分析】建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,),λ,μ用参数α进行表示,利用辅助角公式化简,即可得出结论【题目详解】解:建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)⇒cosα=2λ﹣μ,sinα=λ⇒λ,∴6λ+μ=6()2(sinα+cosα)=2sin()∵,∴sin()∴2sin()∈[2,2],即6λ+μ的取值范围是[2,2]故选D【题目点拨】本题考查平面向量的坐标运算,考查学生的计算能力,正确利用坐标系是关键.属于中档题8、A【解题分析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题9、C【解题分析】依次计算周期即可.【题目详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.10、A【解题分析】由图象平移写出平移后的解析式,再由正弦函数的性质求对称轴方程.【题目详解】,令,,则且.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据题意,有在R上恒成立,则,即可得解.【题目详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.12、【解题分析】根据扇形面积与周长公式代入列式,联立可求解半径.【题目详解】根据扇形面积公式得,周长公式得,联立可得.故答案为:13、①.0②.【解题分析】利用坐标法可得,结合条件及完全平方数的最值即得.【题目详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.14、【解题分析】设函数,再利用复合函数的单调性原理求解.【题目详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:15、24:25【解题分析】设三角形三边的边长分别为,分别求出阴影部分面积和大正方形面积即可求解.【题目详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中,设三角形三边的边长分别为,则大正方形的边长为5,所以大正方形的面积,如图,将延长到,则,所以,又到的距离即为到的距离,所以三角形的面积等于三角形的面积,即,所以“赵爽弦图”外面(图中阴影部分)的面积,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为.故答案为:24:25.16、-1【解题分析】利用幂函数的定义列出方程求出m的值,将m的值代入函数解析式检验函数的单调性【题目详解】∵y=(m2﹣5m﹣5)x2m+1是幂函数∴m2﹣5m﹣5=1解得m=6或m=﹣1当m=6时,y=(m2﹣5m﹣5)x2m+1=x13不满足在(0,+∞)上为减函数当m=﹣1时,y=(m2﹣5m﹣5)x2m+1=x﹣1满足在(0,+∞)上为减函数故答案为m=﹣1【题目点拨】本题考查幂函数的定义:形如y=xα(其中α为常数)、考查幂函数的单调性与幂指数的正负有关三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)选①或.选②③或.【解题分析】(1)分别求出两个集合,再根据并集的运算即可得解;(2)选①,根据,得,分和两种情况讨论即可得解.选②,根据,得,分和两种情况讨论即可得解.选③,根据,分和两种情况讨论即可得解.【小问1详解】解:当时,,,所以;【小问2详解】解:选①,因为,所以,当时,,解得;当时,因为,所以,解得,综上所述,或.选②,因为,所以,或,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.选③,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.18、【解题分析】利用同角三角函数的基本关系可求得的值,再结合诱导公式可求得所求代数式的值.【题目详解】∵,∴,∵,∴所以,∴【题目点拨】关键点睛:解决三角函数中的给值求值的问题时,关键在于找出待求的角与已知的角之间的关系.19、(1)或;(2)的最大值和最小值分别为:,.【解题分析】(1)利用三角恒等变换化简函数,再利用给定的函数值及x的范围求解作答.(2)求出函数相位的范围,再结合正弦函数的性质计算作答.【小问1详解】依题意,,由,即得:,而,即,于是得或,解得或,所以x的值是或.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以的最大值和最小值分别为:,.20、(1)在区间,上单调递增,在区间上单调递减,证明见解析(2)【解题分析】(1)根据增减函数的定义,利用作差法比较与0的大小即可;(2)根据三角函数的性质可得、,利用函数的单调性列出三角不等式,解不等式即可.【小问1详解】在区间,上单调递增,在区间上单调递减.①选区间进行证明.,,且,有,由,所以,由,所以,所以,,所以在区间上单调递增.②选区间进行证明.,,且,有,由,,所以,,所以在区间上单调递减.③选区间进行证明.参考②的证明,在区间上单调递增.【小问2详解】,因为,,在区间上单调递减,所以,(),所以,所求解集为.21、(1),(2)或(3)存在,且m取值范围为【解题分析】(1)函数,的最小正周期为.可得,即可求解的单调增区间(2)根据x在上求解的值域,即可求解实数n的取值范围;(3)由题意,求解最小值,利用换元法求解的最小值,即可求解m的范围【题目详解】(1)函数f(x)•1=2sin2(ωx)cos(2ωx)﹣1=sin(2ωx)cos(2ωx)=2sin(2ωx)∵f(x)的最小正周期为π.ω>0∴,∴ω=1那么f(x)的解析式f(x)=2sin(2x)令2x,k∈Z得:x∴f(x)的单调增区间为[,],k∈Z(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一个解,转化为函数y=f(x)+1与函数y=2n只有一个交点∵x在[0,]上,∴(2x)那么函数y=f(x)+1=2sin(2x)+1的值域为[,3],结合图象可知函数y=f(x)+1与函数y=2n只有一个交点那么2n<2或2n=3,可得或n=(3)由(1)可知f(x)=2sin(2x)∴f(x2)min=﹣2实数m满足对任意x1∈[﹣1,1],都存在x2∈R,使得m()+1>f(x2)成立即m()+1>﹣2成立令ym()+1设t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论