版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省丽江市2024届高一数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,AB是⊙O直径,C是圆周上不同于A、B的任意一点,PA与平面ABC垂直,则四面体P_ABC的四个面中,直角三角形的个数有()A.4个 B.3个C.1个 D.2个2.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数在区间上的图象的大致形状是()A. B.C. D.3.已知命题:函数过定点,命题:函数是幂函数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱 B.圆锥C.四面体 D.三棱柱6.函数对于定义域内任意,下述四个结论中,①②③④其中正确的个数是()A.4 B.3C.2 D.17.下列函数中,周期为的是()A. B.C. D.8.幂函数图象经过点,则的值为()A. B.C. D.9.已知函数为偶函数,在单调递减,且在该区间上没有零点,则的取值范围为()A. B.C. D.10.如图所示,已知全集,集合,则图中阴影部分表示的集合为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的体积为__________12.已知幂函数在上为减函数,则实数_______13.设x、y满足约束条件,则的最小值是________.14.在矩形ABCD中,O是对角线的交点,若,则=________.(用表示)15.已知函数的最大值为,且图像的两条相邻对称轴之间的距离为,求:(1)函数的解析式;(2)当,求函数的单调递减区间16.已知函数在区间上恰有个最大值,则的取值范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)求圆C的标准方程;(2)求圆C在点B处的切线方程.18.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.19.设集合,,(1),求;(2)若“”是“”的充分条件,求的取值范围20.已知函数的图象在轴右侧的第一个最高点和第一个最低点的坐标分别为和.(1)求函数的解析式;(2)求的值21.如图,在四棱锥中,底面,,,,,是中点(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】AB是圆O的直径,可得出三角形是直角三角形,由圆O所在的平面,根据线垂直于面性质得出三角形和三角形是直角三角形,同理可得三角形是直角三角形.【题目详解】∵AB是圆O的直径,∴∠ACB=,即,三角形是直角三角形.又∵圆O所在的平面,∴三角形和三角形是直角三角形,且BC在此平面中,∴平面,∴三角形是直角三角形.综上,三角形,三角形,三角形,三角形.直角三角形数量为4.故选:A.【题目点拨】考查线面垂直的判定定理和应用,知识点较为基础.需多理解.难度一般.2、A【解题分析】先由函数的奇偶性确定部分选项,再通过特殊值得到答案.【题目详解】因为,所以在区间上是偶函数,故排除B,D,又,故选:A【题目点拨】本题主要考查函数的性质确定函数的图象,属于基础题.3、B【解题分析】根据幂函数的性质,从充分性与必要性两个方面分析判断.【题目详解】若函数是幂函数,则过定点;当函数过定点时,则不一定是幂函数,例如一次函数,所以是的必要不充分条件.故选:B.4、A【解题分析】根据两个命题中的取值范围,分析是否能得到pq和qp【题目详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.5、A【解题分析】因为圆柱的三视图有两个矩形,一个圆,正视图不可能是三角形,而圆锥、四面体(三棱锥)、三棱柱的正视图都有可能是三角形,所以选A.考点:空间几何体的三视图.6、B【解题分析】利用指数的运算性质及指数函数的单调性依次判读4个序号即可.【题目详解】,①正确;,,②错误;,由,且得,故,③正确;由为减函数,可得,④正确.故选:B.7、C【解题分析】对于A、B:直接求出周期;对于C:先用二倍角公式化简,再求其周期;对于D:不是周期函数,即可判断.【题目详解】对于A:的周期为,故A错误;对于B:的周期为,故B错误;对于C:,所以其周期为,故C正确;对于D:不是周期函数,没有最小正周期,故D错误.故选:C8、D【解题分析】设,由点幂函数上求出参数n,即可得函数解析式,进而求.【题目详解】设,又在图象上,则,可得,所以,则.故选:D9、D【解题分析】根据函数为偶函数,得到,再根据函数在单调递减,且在该区间上没有零点,由求解.【题目详解】因为函数为偶函数,所以,由,得,因为函数在单调递减,且在该区间上没有零点,所以,解得,所以的取值范围为,故选:D10、A【解题分析】根据文氏图表示的集合求得正确答案.【题目详解】文氏图表示集合为,所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】由图可知,该三棱锥的体积为V=12、-1【解题分析】利用幂函数的定义列出方程求出m的值,将m的值代入函数解析式检验函数的单调性【题目详解】∵y=(m2﹣5m﹣5)x2m+1是幂函数∴m2﹣5m﹣5=1解得m=6或m=﹣1当m=6时,y=(m2﹣5m﹣5)x2m+1=x13不满足在(0,+∞)上为减函数当m=﹣1时,y=(m2﹣5m﹣5)x2m+1=x﹣1满足在(0,+∞)上为减函数故答案为m=﹣1【题目点拨】本题考查幂函数的定义:形如y=xα(其中α为常数)、考查幂函数的单调性与幂指数的正负有关13、-6【解题分析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从而得到的最小值即可【题目详解】解:由得,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小,由得,即,代入目标函数,得∴目标函数的最小值是﹣6故答案为:【题目点拨】本题考查简单线性规划问题,属中档题14、【解题分析】根据=,利用向量的线性运算转化即可.【题目详解】在矩形ABCD中,因为O是对角线的交点,所以=,故答案为:.【题目点拨】本题考查平面向量的线性运算,较为容易.15、(1);(2)和【解题分析】(1)根据降幂公式与辅助角公式化简函数解析式,然后由题意求解,从而求解出解析式;(2)根据(1)中的解析式,利用整体法代入化简计算函数的单调减区间,再由,给赋值,求出单调减区间.【小问1详解】化简函数解析式得,因为图像的两条相邻对称轴之间的距离为,即,且函数最大值为,所以且,得,所以函数解析式为.【小问2详解】由(1)得,,得,因为,所以函数的单调减区间为和16、【解题分析】将代入函数解析式,求出的取值范围,根据正弦取8次最大值,求出的取值范围【题目详解】因为,,所以,又函数在区间上恰有个最大值,所以,得【题目点拨】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)做辅助线,利用勾股定理,计算BC的长度,然后得出C的坐标,结合圆的方程,即可得出答案.(2)利用直线垂直,斜率之积为-1,计算切线的斜率,结合点斜式,得到方程.【题目详解】(1)过C点做CDBA,联接BC,因为,所以,因为所以,所以圆的半径故点C的坐标为,所以圆的方程为(2)点B的坐标为,直线BC的斜率为故切线斜率,结合直线的点斜式解得直线方程为【题目点拨】本道题目考查了圆的方程的求解和切线方程计算,在计算圆的方程的时候,关键找出圆的半径和圆心,建立方程,计算切线方程,可以结合点斜式,计算方程,即可.18、(1)(2)在上单调递减,证明见解析(3)【解题分析】(1)依题意可得,即可得到方程,解得即可;(2)首先判断函数的单调性,再根据定义法证明,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(3)根据函数的奇偶性与单调性将函数不等式转化为自变量的不等式,再解得即可;【小问1详解】解:因为是定义在上的奇函数,所以,即,即,所以,即;解得,所以【小问2详解】解:函数是上的减函数证明:在上任取,,设,因为,所以,则,所以即所以在上单调递减【小问3详解】解:因为是定义在上奇函数所以可化为又在上单调递减,所以解得19、(1)(2)或【解题分析】(1)先求集合B的补集,再与集合A取交集;(2)把“”是“”的充分条件转化为集合A与B之间的关系再求解的取值范围【小问1详解】时,,又故【小问2详解】由题意知:“”是“”的充分条件,即当时,,,满足题意;当时,,欲满足则必须解之得综上得的取值范围为或20、(1);(2).【解题分析】(1)由已知得和,利用即可求出函数的解析式;(2)由已知得的值,代入,即可得的值试题解析:(1)解:由题意可得,1分,3分∴4分由得,5分∴.6分(2)解:∵点是函数在轴右侧的第一个最高点,∴.7分∴.8分∴9分10分11分12分考点:1、三角函数的图象与性质;2、两角和的正弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《传感与测试技术》2023-2024学年第一学期期末试卷
- 国有土地委托经营管理合同
- 合同编504条与民法典61条
- 大班音乐课件P《春雨沙沙》
- 2024年六盘水客运从业资格证考试一点通
- 2024个人短期借款合同书
- 会议备忘录范文6篇-20220308150300
- 2024中国工商银行借贷合同范本
- 2024版家政服务合同样本
- 2024个人小额贷款合同书范本
- (完整版)新概念英语第一册单词表(打印版)
- 美食行业外卖平台配送效率提升方案
- 中国民用航空局信息中心招聘笔试题库2024
- 芯片设计基础知识题库100道及答案(完整版)
- 2025届高考语文一轮复习:文言文概括和分析 课件
- 年产10万套新能源车电池托盘项目可行性研究报告写作模板-申批备案
- 《大学美育》 课件 4.模块五 第二十四章 时空综合的影视艺术之美
- 2022-2023学年广东省广州市天河区六年级(上)期末数学试卷(含答案)
- 2024年全国职业院校技能大赛高职组(智慧物流赛项)考试题库(含答案)
- 2024年新人教版七年级上册历史 第11课 西汉建立和“文景之治”
- 北师大版(三起)(2024)三年级上册英语Unit 1 Family单元测试卷(含答案)
评论
0/150
提交评论