




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年四川省成都市武侯中学高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数满足,且是偶函数,当时,,若在区间内,函数有4个零点,则实数的取值范围是(
)A.
B.
C.
D.参考答案:C略2.把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数的反函数图像重合,则f(x)=(
)A.
B.
C.
D.参考答案:D3.(12)设函数是函数的导函数,,若对任意的,都有,则的解集为(A)(-1,1)
(B)(-1,+∞)
(C)(-∞,-1)
(D)(-∞,1)参考答案:B4.已知圆C:(x﹣a)2+(y﹣b)2=1,平面区域Ω:,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.5 B.29 C.37 D.49参考答案:C【考点】简单线性规划.【分析】画出不等式组对应的平面区域,利用圆C与x轴相切,得到b=1为定值,此时利用数形结合确定a的取值即可得到结果.【解答】解:作出不等式组对应的平面区域如图:圆心为(a,b),半径为1.∵圆心C∈Ω,且圆C与x轴相切,∴b=1,则a2+b2=a2+1,∴要使a2+b2的取得最大值,则只需a最大即可,由图象可知当圆心C位于B点时,a取值最大,由,解得,即B(6,1),∴当a=6,b=1时,a2+b2=36+1=37,即最大值为37,故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.已知命题,命题,则(
)A.命题是假命题
B.命题是真命题C.命题是真命题
D.命题是假命题参考答案:6.已知六棱锥的底面是正六边形,平面.则下列结论不正确的是(
)A.平面B.平面C.平面D.平面参考答案:D7.设曲线y=x2+1在其任一点(x,y)处切线斜率为g(x),则函数y=g(x)cosx的部分图象可以为
(
)
参考答案:A略8.设向量=(2,3),=(﹣1,2),若m+与﹣2平行,则实数m等于()A.﹣2 B.2 C. D.﹣参考答案:D【考点】平面向量共线(平行)的坐标表示.【分析】由向量的数乘及坐标加减法运算求得m+与﹣2的坐标,代入向量共线的坐标表示求解m的值.【解答】解:∵=(2,3),=(﹣1,2),则m+=m(2,3)+(﹣1,2)=(2m﹣1,3m+2),﹣2=(2,3)﹣2(﹣1,2)=(4,﹣1),又m+与﹣2平行,∴(2m﹣1)×(﹣1)﹣4×(3m+2)=0,即m=﹣.故选:D.9.sin210°cos120°的值为()A.
B.-
C.-
D.参考答案:A10.定义在R上的函数是减函数,且函数的图象关于点成中心对称,若满足不等式组,则当时,的取值范围是A.
(B)
(C)
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.求展开式的x2项的系数是.参考答案:1考点: 二项式系数的性质.
专题: 计算题.分析: 先求出展开式的通项公式,再令x的幂指数等于2,求得r的值,可得展开式的x2项的系数的值.解答: 解:由于展开式的通项公式为Tr+1=?=?34﹣r?,令=2,可得r=4,故展开式的x2项的系数是=1,故答案为1.点评: 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.若圆的圆心到直线的距离为,则a的值为参考答案:0或2略13.对于任意两个正整数,定义某种运算如下:当都为正偶数或正奇数时,
。对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn。则在此定义下,集合M={(a,b)|a※b=18,a∈N*,b∈N*}中的元素个数是
。参考答案:2314.命题“,如果,则”的逆命题是_________________.参考答案:,如果,则略13.执行如图3所示的程序框图,如果输入
.参考答案:916.已知双曲线C:与抛物线y2=8x有公共的焦点F,它们在第一象限内的交点为M.若双曲线C的离心率为2,则|MF|=_____.参考答案:略17.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.参考答案:【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有种情况.若选出的2名学生恰有1名女生,有种情况,若选出的2名学生都是女生,有种情况,所以所求的概率为.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(13分)甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(Ⅰ)记甲恰好击中目标2次的概率;(Ⅱ)求乙至少击中目标2次的概率;(Ⅲ)求乙恰好比甲多击中目标2次的概率;参考答案:解析:(I)甲恰好击中目标的2次的概率为
(II)乙至少击中目标2次的概率为;
(III)设乙恰好比甲多击中目标2次为事件A,乙恰击中目标2次且甲恰击中目标0次为事件B1,乙恰击中目标3次且甲恰击中目标1次为事件B2,则A=B1+B2,B1,B2为互斥事件.=.
所以,乙恰好比甲多击中目标2次的概率为.19.数列{an}的各项均为正数,且an+1=an+﹣1(n∈N*),{an}的前n项和是Sn.(Ⅰ)若{an}是递增数列,求a1的取值范围;(Ⅱ)若a1>2,且对任意n∈N*,都有Sn≥na1﹣(n﹣1),证明:Sn<2n+1.参考答案:【考点】8H:数列递推式;8E:数列的求和.【分析】(I)由a2>a1>0?﹣1>a1>0,解得0<a1<2.又a3>a2>0,?>a2,?0<a2<2?﹣1<2,解得1<a1<2.可得:1<a1<2.下面利用数学归纳法证明:当1<a1<2时,?n∈N*,1<an<2成立即可.于是an+1﹣an=﹣1>0,即an+1>an,满足{an}是递增数列,即可得出a1的取值范围.(II)a1>2,可用数学归纳法证明:an>2对?n∈N*都成立.于是:an+1﹣an=﹣1<2,即数列{an}是递减数列.在Sn≥na1﹣(n﹣1)中,令n=2,可得:2a1+﹣1=S2≥2a1﹣,解得a1≤3,因此2<a1≤3.下证:(1)当时,Sn≥na1﹣(n﹣1)恒成立.事实上,当时,由an=a1+(an﹣a1)≥a1+(2﹣)=.累加求和即可证明.再证明:(2)时不合题意.事实上,当时,设an=bn+2,可得≤1.由an+1=an+﹣1(n∈N*),可得:bn+1=bn+﹣1,可得=≤≤.于是数列{bn}的前n和Tn≤3.故Sn=2n+Tn<2n+3=na1+(2﹣a1)n+3,令a1=+t(t>0),可得:Sn<na1﹣.这与Sn≥na1﹣(n﹣1)恒成立矛盾.【解答】(I)解:由a2>a1>0?﹣1>a1>0,解得0<a1<2,①.又a3>a2>0,?>a2,?0<a2<2?﹣1<2,解得1<a1<2,②.由①②可得:1<a1<2.下面利用数学归纳法证明:当1<a1<2时,?n∈N*,1<an<2成立.(1)当n=1时,1<a1<2成立.(2)假设当n=k∈N*时,1<an<2成立.则当n=k+1时,ak+1=ak+﹣1∈?(1,2),即n=k+1时,不等式成立.综上(1)(2)可得:?n∈N*,1<an<2成立.于是an+1﹣an=﹣1>0,即an+1>an,∴{an}是递增数列,a1的取值范围是(1,2).(II)证明:∵a1>2,可用数学归纳法证明:an>2对?n∈N*都成立.于是:an+1﹣an=﹣1<2,即数列{an}是递减数列.在Sn≥na1﹣(n﹣1)中,令n=2,可得:2a1+﹣1=S2≥2a1﹣,解得a1≤3,因此2<a1≤3.下证:(1)当时,Sn≥na1﹣(n﹣1)恒成立.事实上,当时,由an=a1+(an﹣a1)≥a1+(2﹣)=.于是Sn=a1+a2+…+an≥a1+(n﹣1)=na1﹣.再证明:(2)时不合题意.事实上,当时,设an=bn+2,可得≤1.由an+1=an+﹣1(n∈N*),可得:bn+1=bn+﹣1,可得=≤≤.于是数列{bn}的前n和Tn≤<3b1≤3.故Sn=2n+Tn<2n+3=na1+(2﹣a1)n+3,③.令a1=+t(t>0),由③可得:Sn<na1+(2﹣a1)n+3=na1﹣﹣tn+.只要n充分大,可得:Sn<na1﹣.这与Sn≥na1﹣(n﹣1)恒成立矛盾.∴时不合题意.综上(1)(2)可得:,于是可得=≤≤.(由可得:).故数列{bn}的前n项和Tn≤<b1<1,∴Sn=2n+Tn<2n+1.20.(13分)(2015?淄博一模)设函数f(x)=x2﹣ax+lnx(a为常数).(Ⅰ)当a=3时,求函数f(x)的极值;(Ⅱ)当0<a<2时,试判断f(x)的单调性;(Ⅲ)对任意x0∈[1,2],使不等式f(x0)<mlna对任意a∈(0,)恒成立,求实数m的取值范围.参考答案:【考点】:利用导数研究函数的极值;利用导数研究函数的单调性.【专题】:综合题;导数的综合应用.【分析】:(Ⅰ)先对f(x)求导,根据导数研究函数的单调性,进而求出函数的极值;(Ⅱ)利用基本不等式确定导函数在0<a<2时的正负,然后判断f(x)的单调性;(Ⅲ)采用分离参数m的方法转化成求函数g(a)=在(0,)上的最值问题.解:依题意f′(x)=,(Ⅰ)函数的定义域为(0,+∞),当a=3时,f(x)=x2﹣3x+lnx,f′(x)=,当时,f′(x)<0;f(x)单调递减;当0<x<,或x>1时,f′(x)>0;f(x)单调递增;所在f(x)极小值=f(1)=﹣2,f(x)极大值=f()=﹣.(Ⅱ)函数的定义域为(0,+∞),f′(x)=2x+﹣a,因为2x+,(当且仅当x=时,等号成立)因为0<a<2,所以f′(x)=2x+﹣a>0在(0,+∞)上恒成立,故f(x)在(0,+∞)上是增函数.(Ⅲ)当a∈(0,)时,由(Ⅱ)知,f(x)在[1,2]上单调递增,所以f(x)max=f(1)=1﹣a.故问等价于:当a∈(0,)时,不等式1﹣a<mlna恒成立,即m<恒成立.记g(a)=,则g′(a)=,令M(a)=﹣alna﹣1+a,M′(a)=﹣lna>0,所以M(a)在a∈(0,)上单调递增,M(a)<M()=,故g′(a)<0,所以g(a)=在a∈(0,)上单调递减,所以M=﹣,即实数m的取值范围为(﹣].【点评】:本题考查了用导数研究函数的极值、最值及单调性问题,还考查了恒成立问题的处理方法,综合性较强.解决恒成立问题常转化成求函数的最值问题解决.21.如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=﹣将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围.参考答案:考点:椭圆的标准方程;直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)椭圆离心率为,线l:x=﹣将线段F1F2分成两段,其长度之比为1:3,可确定几何量,从而可得椭圆C的方程;(Ⅱ)分类讨论,直线与椭圆方程联立,利用韦达定理及向量知识,即可求得结论.解答:解:(Ⅰ)设F2(c,0),则=,所以c=1.因为离心率e=,所以a=,所以b=1所以椭圆C的方程为.
…(6分)(Ⅱ)当直线AB垂直于x轴时,直线AB方程为x=﹣,此时P(,0)、Q(,0),.当直线AB不垂直于x轴时,设直线AB的斜率为k,M(﹣,m)(m≠0),A(x1,y1),B(x2,y2).由得(x1+x2)+2(y1+y2)=0,则﹣1+4mk=0,∴k=.此时,直线PQ斜率为k1=﹣4m,PQ的直线方程为,即y=﹣4mx﹣m.联立消去y,整理得(32m2+1)x2+16m2x+2m2﹣2=0.所以,.于是=(x1﹣1)(x2﹣1)+y1y2=x1x2﹣(x1+x2)+1+(4mx1+m)(4mx2+m)===.令t=1+32m2,1<t<29,则.又1<t<29,所以.综上,的取值范围为[﹣1,).…(15分)点评:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.22.如图,直线l是湖岸线,O是l上一点,弧是以O为圆心的半圆形栈桥,C为湖岸线l上一观景亭,现规划在湖中建一小岛D,同时沿线段CD和DP(点P在半圆形栈桥上且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025【设备采购合同】设备订购合同范本
- 2025光伏发电系统采购合同范本
- 2025设备租赁合同工程机械租赁合同
- 2025苏州市活动房屋加工安装合同
- 2025姐弟车辆财产赠与合同
- 2025租赁承包合同范本
- 2025短期劳动合同范本【标准】
- 2025年门面租赁合同书范本
- 2025解除合同的劳动合同法规定
- 2025电梯租赁合同
- 2025年中国铜铝复合母线行业市场运行现状及投资战略研究报告
- (高清版)DB1331∕T 072-2024 《雄安新区高品质饮用水工程技术规程》
- 2025年金丽衢十二校高三语文第二次模拟联考试卷附答案解析
- 广东省深圳市福田区2023-2024学年六年级下学期英语期中试卷(含答案)
- 2023-2024学年广东省广州七中七年级(下)期中数学试卷(含答案)
- 2025年北京城市排水集团有限责任公司招聘笔试参考题库含答案解析
- 课件-2025年春季学期 形势与政策 第一讲-加快建设社会主义文化强国
- 2025年山东惠民县农业投资发展限公司招聘10人历年高频重点提升(共500题)附带答案详解
- 大学美育知到智慧树章节测试课后答案2024年秋长春工业大学
- 《基于嵌入式Linux的农业信息采集系统设计与研究》
- 外科创伤处理-清创术(外科课件)
评论
0/150
提交评论