2024届河南省花洲实验高级中学数学高一上期末调研模拟试题含解析_第1页
2024届河南省花洲实验高级中学数学高一上期末调研模拟试题含解析_第2页
2024届河南省花洲实验高级中学数学高一上期末调研模拟试题含解析_第3页
2024届河南省花洲实验高级中学数学高一上期末调研模拟试题含解析_第4页
2024届河南省花洲实验高级中学数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省花洲实验高级中学数学高一上期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图正方体,棱长为1,为中点,为线段上的动点,过的平面截该正方体所得的截面记为,则下列命题正确的是当时,为四边形;当时,为等腰梯形;当时,与交点R满足;当时,为六边形;当时,的面积为A. B.C. D.2.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.3.下列函数中,在R上为增函数的是()A.y=2-xC.y=2x4.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.5.已知,是不共线的向量,,,,若,,三点共线,则实数的值为()A. B.10C. D.56.已知一元二次方程的两个不等实根都在区间内,则实数的取值范围是()A. B.C. D.7.已知函数的部分图象如图所示,则的解析式为()A. B.C. D.8.关于的不等式的解集为,,,则关于的不等式的解集为()A. B.C. D.9.已知角的终边在第三象限,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知实数a、b,满足,,则关于a、b下列判断正确的是()A.a<b<2 B.b<a<2C.2<a<b D.2<b<a二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,且函数恰有两个不同零点,则实数的取值范围是___________.12.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.13.已知幂函数y=xα的图象过点(4,),则α=__________.14.求值:____.15.=_______.16.已知函数,若存在,使得,则的取值范围为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)若的值域为,求a的值(2)证明:对任意,总存在,使得成立18.已知函数在闭区间()上的最小值为(1)求的函数表达式;(2)画出的简图,并写出的最小值19.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上最大值为3,求的值.20.定义在上的函数(且)为奇函数(1)求实数的值;(2)若函数的图象经过点,求使方程在有解的实数的取值范围;(3)不等式对于任意的恒成立,求实数的取值范围.21.化简或求值:(1);(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由已知根据的不同取值,分别作出不同情况下的截面图形,利用数形结合思想能求出结果【题目详解】当时,如图,是四边形,故正确当时,如图,为等腰梯形,正确;当时,如图,由三角形与三角形相似可得,由三角形与三角形相似可得,,正确当时,如图是五边形,不正确;当时,如图是菱形,面积为,正确,正确的命题为,故选D【题目点拨】本题主要考查正方体的截面,意在考查空间想象能力,解题时要认真审题,注意数形结合思想的合理运用,是中档题2、C【解题分析】根据常见函数的单调性和奇偶性,即可容易判断选择.【题目详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【题目点拨】本题考查常见函数单调性和奇偶性的判断,属简单题.3、C【解题分析】对于A,y=2-x=12x,在R上是减函数;对于B,y=x2在-∞,0上是减函数,在0,+∞上是增函数;对于C,当【题目详解】解:对于A,y=2-x=12对于B,y=x2在-∞,0对于C,当x≥0时,y=2x是增函数,当x<0时,y=x是增函数,所以函数fx对于D,y=lgx的定义域是0,+∞故选:C.4、D【解题分析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【题目详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D5、A【解题分析】由向量的线性运算,求得,根据三点共线,得到,列出方程组,即可求解.【题目详解】由,,可得,因为,,三点共线,所以,所以存在唯一的实数,使得,即,所以,解得,.故选:A.6、D【解题分析】设,根据二次函数零点分布可得出关于实数的不等式组,由此可解得实数的取值范围.【题目详解】设,则二次函数的两个零点都在区间内,由题意,解得.因此,实数的取值范围是.故选:D.7、B【解题分析】根据图像得到,,计算排除得到答案.【题目详解】根据图像知选项:,排除;D选项:,排除;根据图像知选项:,排除;故选:【题目点拨】本题考查了三角函数图像的识别,计算特殊值可以快速排除选项,是解题的关键.8、A【解题分析】根据题意可得1,是方程的两根,从而得到的关系,然后再解不等式从而得到答案.【题目详解】由题意可得,且1,是方程的两根,为方程的根,,则不等式可化为,即,不等式的解集为故选:A9、D【解题分析】根据角的终边所在象限,确定其正切值和余弦值的符号,即可得出结果.【题目详解】角的终边在第三象限,则,,点P在第四象限故选:D.10、D【解题分析】先根据判断a接近2,进一步对a进行放缩,,进而通过对数运算性质和基本不等式可以判断a>2;根据b的结构,构造函数,得出函数的单调性和零点,进而得到a,b的大小关系,最后再判断b和2的大小关系,最终得到答案.【题目详解】.构造函数:,易知函数是R上的减函数,且,由,可知:,又,∴,则a>b.又∵,∴a>b>2故选:D.【题目点拨】对数函数式比较大小通常借助中间量,除了0和1之外,其它的中间量需要根据题目进行分析,中间会用到指对数的运算性质和放缩法;另外,构造函数利用函数的单调性比较大小是比较常用的一种方法,需要我们对式子的结构进行仔细分析,平常注意归纳总结.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】作出函数的图象,把函数的零点转化为直线与函数图象交点问题解决.【题目详解】由得,即函数零点是直线与函数图象交点横坐标,当时,是增函数,函数值从1递增到2(1不能取),当时,是增函数,函数值为一切实数,在坐标平面内作出函数的图象,如图,观察图象知,当时,直线与函数图象有2个交点,即函数有2个零点,所以实数的取值范围是:.故答案为:12、【解题分析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【题目详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【题目点拨】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.13、【解题分析】把点的坐标代入幂函数解析式中即可求出.【题目详解】解:由幂函数的图象过点,所以,解得.故答案为:.14、【解题分析】根据诱导公式以及正弦的两角和公式即可得解【题目详解】解:因为,故答案为:15、##【解题分析】利用对数的运算法则进行求解.【题目详解】.故答案为:.16、【解题分析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【题目详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【题目点拨】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2(2)证明见解析【解题分析】(1)由题意,可得,从而即可求解;(2)利用对勾函数单调性求出在上的值域,再分三种情况讨论二次函数在闭区间上的值域,然后证明的值域是值域的子集恒成立即可得证.【小问1详解】解:因为的值域为,所以,解得【小问2详解】证明:由题意,根据对勾函数的单调性可得在上单调递增,所以设在上的值域为M,当,即时,在上单调递增,因为,,所以;当,即时,在上单调递减,因为,,所以;当,即时,,,所以;综上,恒成立,即在上的值域是在上值域的子集恒成立,所以对任意总存在,使得成立.18、(1)(2)见解析【解题分析】【试题分析】(1)由于函数的对称轴为且开口向上,所以按三类,讨论函数的最小值.(2)由(1)将分段函数的图象画出,由图象可判断出函数的最小值.【试题解析】(1)依题意知,函数是开口向上的抛物线,∴函数有最小值,且当时,下面分情况讨论函数在闭区间()上的取值情况:①当闭区间,即时,在处取到最小值,此时;②当,即时,在处取到最小值,此时;③当闭区间,即时,在处取到最小值,此时综上,的函数表达式为(2)由(1)可知,为分段函数,作出其图象如图:由图像可知【题目点拨】本题主要考查二次函数在动区间上的最值问题,考查分类讨论的数学思想,考查数形结合的数学思想方法.由于二次函数的解析式是知道的,即开口方向和对称轴都知道,而题目给定定义域是含有参数的动区间,故需要对区间和对称轴对比进行分类讨论函数的最值.19、(1);(2)或.【解题分析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.20、(1)1(2)(3)答案见解析【解题分析】(1)根据题意可得,即可得解;(2)根据函数的图象经过点,可得函数经过点,从而可求得,在求出函数在时的值域,即可得出答案;(3)原不等式成立即为,令,则,分和两种情况讨论,从而可得出答案.【小问1详解】解:因为函数是定义在上的奇函数,所以,解得,当时,,此时,故当时,函数为奇函数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论