版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省凌源市第二高级中学高一数学第一学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为A B.C. D.2.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)3.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.4.若曲线与直线始终有交点,则的取值范围是A. B.C. D.5.如图,摩天轮上一点在时刻距离地面的高度满足,,,,已知某摩天轮的半径为50米,点距地面的高度为60米,摩天轮做匀速运动,每10分钟转一圈,点的起始位置在摩天轮的最低点,则(米)关于(分钟)的解析式为()A.() B.()C.() D.()6.下列各式中,正确是()A. B.C. D.7.已知直线:,:,:,若且,则的值为A. B.10C. D.28.函数的单调递减区间是()A.() B.()C.() D.()9.点关于直线的对称点是A. B.C. D.10.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确的命题是()A.①② B.②③C.③④ D.④二、填空题:本大题共6小题,每小题5分,共30分。11.向量在边长为1的正方形网格中的位置如图所示,则__________12.若sinθ=,求的值_______13.已知函数,则下列命题正确的是______填上你认为正确的所有命题的序号①函数单调递增区间是;②函数的图象关于点对称;③函数的图象向左平移个单位长度后,所得的图象关于y轴对称,则m的最小值是;④若实数m使得方程在上恰好有三个实数解,,,则14.已知,且是第三象限角,则_____;_____15.已知表示这个数中最大的数.能够说明“对任意,都有”是假命题的一组整数的值依次可以为_____16.已知函数在上单调递减,则实数的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断函数f(x)的奇偶性;(2)讨论f(x)的单调性;(3)解不等式.18.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.19.已知函数f(x)=lg,(1)求f(x)的定义域并判断它的奇偶性(2)判断f(x)的单调性并用定义证明(3)解关于x的不等式f(x)+f(2x2﹣1)<020.已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.21.已知函数是定义在上的奇函数.(1)求实数的值;(2)解关于的不等式;(3)是否存在实数,使得函数在区间上的取值范围是?若存在,求出实数的取值范围;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由题意可知,由在上为增函数,得,选B.2、D【解题分析】设点,根据点到两点距离相等,列出方程,即可求解.【题目详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.3、C【解题分析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【题目详解】解:因为角的终边与单位圆相交于点,则,故选:C4、A【解题分析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【题目详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【题目点拨】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.5、B【解题分析】根据给定信息,依次计算,再代入即可作答.【题目详解】因函数最大值为110,最小值为10,因此有,解得,而函数的周期为10,即,则,又当时,,则,而,解得,所以.故选:B6、C【解题分析】利用指数函数的单调性可判断AB选项的正误,利用对数函数的单调性可判断CD选项的正误.【题目详解】对于A选项,因为函数在上为增函数,则,A错;对于B选项,因为函数在上为减函数,则,B错;对于C选项,因为函数为上的增函数,则,C对;对于D选项,因为函数为上的减函数,则,D错.故选:C.7、C【解题分析】由且,列出方程,求得,,解得的值,即可求解【题目详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以故选C【题目点拨】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题8、A【解题分析】根据余弦函数单调性,解得到答案.【题目详解】解:,令,,解得,,故函数的单调递减区间为;故选:A.9、A【解题分析】设对称点为,则,则,故选A.10、D【解题分析】利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可【题目详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题故选D【题目点拨】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】由题意可知故答案为312、6【解题分析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案.【题目详解】原式=+,因为,所以.所以.故答案为:6.13、①③④【解题分析】先利用辅助角公式化简,再根据函数,结合三角函数的性质及图形,对各选项依次判断即可【题目详解】①,令,所以,因为,所以令,则,所以单调增区间是,故正确;②因为,所以不是对称中心,故错误;③的图象向左平移个单位长度后得到,且是偶函数,所以,所以且,所以时,,故正确;④函数,故错误;⑤因为,作出在上的图象如图所示:与有且仅有三个交点:所以,又因为时,且关于对称,所以,所以,故正确;故选:①③⑤14、①.##②.##0.96【解题分析】利用平方关系求出,再利用商数关系及二倍角的正弦公式计算作答.【题目详解】因,且是第三象限角,则,所以,.故答案为:;15、(答案不唯一)【解题分析】首先利用新定义,再列举命题为假命题的一组数值,再根据定义,验证命题是假命题.【题目详解】设,,则,而,,故命题为假命题,故依次可以为故答案为:(答案不唯一)16、【解题分析】根据分段函数的单调性,可知每段函数的单调性,以及分界点处的函数的的大小关系,即可列式求解.【题目详解】因为分段函数在上单调递减,所以每段都单调递减,即,并且在分界点处需满足,即,解得:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)在上单调递增(3)【解题分析】(1)依据奇偶函数定义去判断即可;(2)以定义法去证明函数的单调性;(3)把抽象不等式转化为整式不等式再去求解即可.【小问1详解】由得,所以函数f(x)的定义域为,关于原点对称又因为,故函数为奇函数【小问2详解】设任意,,则又,则,则,即故在上单调递增【小问3详解】由(2)知,函数在上单调递增,所以由,可得,解得,所以不等式的解集为18、(1)点的坐标为或(2)见解析,过的圆必过定点和【解题分析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点解析:(Ⅰ)设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又∵圆又∵代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值19、(1)奇函数(2)见解析(3)【解题分析】(1)先求函数f(x)的定义域,然后检验与f(x)的关系即可判断;(2)利用单调性的定义可判断f(x)在(﹣1,1)上单调性;(3)结合(2)中函数的单调性及函数的定义域,建立关于x的不等式,可求【题目详解】(1)的定义域为(-1,1)因为,所以为奇函数(2)为减函数.证明如下:任取两个实数,且,===<0<0,所以在(-1,1)上为单调减函数(3)由题意:,由(1)、(2)知是定义域内单调递减的奇函数即不等式的解集为(,)【题目点拨】本题主要考查了函数单调性及奇偶性的定义的应用,及函数单调性在求解不等式中的应用20、(1)A∪B={x|-2<x<3},;(2)(-∞,-2]【解题分析】(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}(2)由A∩B=A,得A⊆B..解得m≤-2,即实数m的取值范围为(-∞,-2].21、(1)1(2)(3)存在,【解题分析】(1)根据求解并检验即可;(2)先证明函数单调性得在上为增函数,再根据奇偶性与单调性解不等式即可;(3)根据题意,将问题方程有两个不相等的实数根,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《房地产策划与运营》2023-2024学年第一学期期末试卷
- 淫羊藿培育项目可行性研究报告-淫羊藿市场需求持续增大
- 贵阳人文科技学院《聚合物改性原理及方法》2023-2024学年第一学期期末试卷
- 广州中医药大学《英语教师核心素养解读》2023-2024学年第一学期期末试卷
- 2025山东省安全员-B证考试题库附答案
- 2025年云南省安全员《A证》考试题库及答案
- 广州应用科技学院《建筑给排水与消防》2023-2024学年第一学期期末试卷
- 广州现代信息工程职业技术学院《增材制造技术》2023-2024学年第一学期期末试卷
- 2025黑龙江省建筑安全员C证(专职安全员)考试题库
- 2025年河南省建筑安全员-C证(专职安全员)考试题库
- SYT 6276-2014 石油天然气工业健康、安全与环境管理体系
- 注射用更昔洛韦的临床疗效研究
- 小学三年级上册竖式计算题
- 机场亮化工程
- 2024年青海西部机场集团青海机场有限公司招聘笔试参考题库含答案解析
- 中国绿色建筑现状与未来展望
- 陕西省安康市石泉县2023-2024学年九年级上学期期末考试英语试题
- 2024立式圆筒形钢制焊接常压储罐在用检验技术规范
- 人教版高中生物必修一同步练习全套(含答案解析)
- 2023年非标自动化工程师年度总结及来年计划
- 2023-2024学年甘肃省嘉峪关市酒钢三中高三上数学期末学业质量监测试题含解析
评论
0/150
提交评论