版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆外国语学校数学高一上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.现对有如下观测数据345671615131417记本次测试中,两组数据的平均成绩分别为,两班学生成绩的方差分别为,,则()A., B.,C., D.,2.设,,则的结果为()A. B.C. D.3.若则A. B.C. D.4.的值等于A. B.C. D.5.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B.C. D.6.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,小数记录法的数据V和五分记录法的数据L满足,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(注:)A.0.6 B.0.8C.1.2 D.1.57.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件8.已知,则的大小关系是A. B.C. D.9.sin()=()A. B.C. D.10.已知a=1.50.2,b=log0.21.5,c=0.21.5,则()A.a>b>c B.b>c>aC.c>a>b D.a>c>b二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个定义域为,周期为的偶函数________12.在中,角、、所对的边为、、,若,,,则角________13.如图,在空间四边形中,平面平面,,,且,则与平面所成角的度数为________14.若,,且,则的最小值为__________15.如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________16.已知点在直线上,则的最小值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某中学调查了某班全部45名学生参加社会实践活动和社会公益活动的情况,数据如表单位:人:参加社会公益活动未参加社会公益活动参加社会实践活动304未参加社会实践活动83从该班随机选1名学生,求该学生未参加社会公益活动也未参加社会实践活动的概率;在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,求被选中且未被选中的概率18.2021年8月,国务院教育督导委员会办公室印发《关于组织责任督学进行“五项管理”督导的通知》,通知指出,加强中小学生作业、睡眠、手机、读物、体质管理(简称“五项管理”),是深入推进学生健康成长的重要举措.宿州市要对全市中小学生“体能达标”情况进行摸底,采用普查与抽样相结合的方式进行.现从某样本校中随机抽取20名学生参加体能测试,将这20名学生随机分为甲、乙两组,其中甲、乙两组学生人数之比为3:2,测试后,两组各自的成绩统计如下:甲组学生的平均成绩为75分,方差为16;乙组学生的平均成绩为80分,方差为25(1)估计该样本校学生体能测试的平均成绩;(2)求这20名学生测试成绩的标准差.(结果保留整数)19.已知函数,其中.(1)求的定义域;(2)当时,求的最小值.20.在中,角的对边分别为,的面积为,已知,,(1)求值;(2)判断的形状并求△的面积21.已知集合,集合.(1)求.(2)求,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用平均数以及方差的计算公式即可求解.【题目详解】,,,,故,故选:C【题目点拨】本题考查了平均数与方差,需熟记公式,属于基础题.2、D【解题分析】根据交集的定义计算可得;【题目详解】解:因为,,所以故选:D3、A【解题分析】集合A三个实数0,1,2,而集合B表示的是大于等于1小于2的所有实数,所以两个集合的交集{1},故选A.考点:集合的运算.4、C【解题分析】因为,所以可以运用两角差的正弦公式、余弦公式,求出的值.【题目详解】,,,故本题选C.【题目点拨】本题考查了两角差的正弦公式、余弦公式、以及特殊角的三角函数值.其时本题还可以这样解:,.5、C【解题分析】如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选:C.6、B【解题分析】当时,即可得到答案.【题目详解】由题意可得当时故选:B7、B【解题分析】根据充分条件与必要条件的定义判断即可.【题目详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【题目点拨】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.8、B【解题分析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【题目详解】,,,,故选B.【题目点拨】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.9、A【解题分析】直接利用诱导公式计算得到答案.【题目详解】故选:【题目点拨】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用.10、D【解题分析】由对数和指数函数的单调性比较大小即可.【题目详解】因为,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解题分析】结合定义域与周期与奇偶性,写出符合要求的三角函数即可.【题目详解】满足定义域为R,最小正周期,且为偶函数,符合要求.故答案为:12、.【解题分析】利用余弦定理求出的值,结合角的取值范围得出角的值.【题目详解】由余弦定理得,,,故答案为.【题目点拨】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.13、【解题分析】首先利用面面垂直转化出线面垂直,进一步求出线面的夹角,最后通过解直角三角形求出结果.【题目详解】取BD中点O,连接AO,CO.因为AB=AD,所以,又平面平面,所以平面.因此,即为AC与平面所成的角,由于,,所以,又,所以【题目点拨】本题主要考查直线与平面所成的角,属于基础题型.14、##【解题分析】运用均值不等式中“1”的妙用即可求解.【题目详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.15、【解题分析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形,AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2故答案为:2.点睛:求两条异面直线所成角关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.16、2【解题分析】由点在直线上得上,且表示点与原点的距离∴的最小值为原点到直线的距离,即∴的最小值为2故答案为2点睛:本题考查了数学的化归与转换能力,首先要知道一些式子的几何意义,比如本题表示点和原点的两点间距离,所以本题转化为已知直线上的点到定点的距离的最小值,即定点到直线的距离最小.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】从该班随机选1名学生,利用古典概型能求出该学生未参加社会公益活动也未参加社会实践活动的概率基本事件总数,被选中且未被选中包含的基本事件个数,由此能求出被选中且未被选中的概率【题目详解】解:从该班随机选1名学生,该学生既未参加社会公益活动也未参加社会实践活动的概率在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,基本事件总数,被选中且未被选中包含的基本事件个数,被选中且未被选中的概率【题目点拨】本题考查概率的求法,考查古典概型等基础知识,属于基础题18、(1)77(2)【解题分析】(1)由已知可得甲、乙两组学生的人数分别为12、8,求得总分进而可得平均成绩.(2)方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,.根据方差公式计算可得,.计算求得20人的方差,进而得出标准差.方法二:直接使用权重公式计算即可得出结果.【小问1详解】由题知,甲、乙两组学生的人数分别为12、8,则这20名学生测试成绩的平均数,故可估计该样本校学生体能测试的平均成绩为77【小问2详解】方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,由甲组学生的测试成绩的方差,得由乙组学生的测试成绩的方差,得故这20名学生的测试成绩的方差所以(方法二)直接使用权重公式所以.19、(1)(2).【解题分析】(1)利用对数的真数为正数求出函数的定义域为.(2)在定义域上把化为,利用二次函数求出,从而求出函数的最小值为.解析:(1)欲使函数有意义,则有,解得,则函数的定义域为.(2)因为,所以,配方得到.因为,故,所以(当时取等号),即的最小值为.点睛:求与对数有关的函数的定义域,应该考虑不变形时自变量满足的条件.20、(1);(2)是等腰三角形,其面积为【解题分析】(1)由结合正弦面积公式及余弦定理得到,进而得到结果;(2)由结合内角和定理可得分两类讨论即可.试题解析:(1),由余弦定理得,(2)即或(ⅰ)当时,由第(1)问知,是等腰三角形,(ⅱ)当时,由第(1)问知,又,矛盾,舍.综上是等腰三角形,其面积为点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渣土车辆合伙协议合同范例
- 2024年度股权转让及投资合同书
- 2024年度建筑工程施工合同:某建筑公司与某开发商就某住宅小区项目达成合作2篇
- 2024年度木地板市场渠道拓展合同
- 04版设备维护服务合同
- 2024年度医药产品采购与销售合同
- 2024年度矿山安全生产地形图测绘合同2篇
- 2024年度股权转让合同的撰写要点
- 2024年度企业采购代理合同
- 2024年度健身俱乐部经营权转让合同
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 2023~2024学年第一学期高一期中考试数学试题含答案
- 非遗漆扇扇子科普宣传
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- 2024-2025学年统编版(2024)道德与法治小学一年级上册教学设计(表格版)
- 2024广西专业技术人员继续教育公需科目参考答案(100分)
- MOOC 马克思主义民族理论与政策-广西民族大学 中国大学慕课答案
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 音乐教师职业生涯发展报告
- 《海子诗人简介》PPT课件.ppt
- 阿莫的生病日ppt课件
评论
0/150
提交评论