版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省蚌埠市田家炳中学、五中数学高一上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数是A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数2.函数是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数3.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或4.设集合,则是A. B.C. D.有限集5.已知实数满足,那么的最小值为(
)A. B.C. D.6.下列函数中,在区间上是增函数的是()A. B.C. D.7.已知一个几何体的三视图如图所示,其中俯视图为半圆画,则该几何体的体积为()A B.C. D.8.已知函数在R上为减函数,则实数a的取值范围是()A. B.C. D.9.若则一定有A. B.C. D.10.下列各式中,正确是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则__________.12.若函数的值域为,则的取值范围是__________13.给出下列五个论断:①;②;③;④;⑤.以其中的两个论断作为条件,一个论断作为结论,写出一个正确的命题:___________.14.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.15.全集,集合,则______16.已知直三棱柱的6个顶点都在球O的球面上,若,则球O的半径为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)化简;(2)若α=-,求f(α)的值.18.如图,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,D为AC中点(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A119.某汽车配件厂拟引进智能机器人来代替人工进行某个操作,以提高运作效率和降低人工成本,已知购买x台机器人的总成本为(万元)(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中求得的数量购买机器人,需要安排m人协助机器人,经实验知,每台机器人的日平均工作量(单位:次),已知传统人工每人每日的平均工作量为400次,问引进机器人后,日平均工作量达最大值时,用人数量比引进机器人前工作量达此最大值时的用人数量减少百分之几?20.已知由方程kx2-8x+16=0的根组成的集合A只有一个元素,试求实数k的值21.已知函数,若区间上有最大值5,最小值2.(1)求的值(2)若,在上单调,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据题意,由于函数是,因此排除线线A,B,然后对于选项C,D,由于正弦函数周期为,那么利用图象的对称性可知,函数的周期性为,故选C.考点:函数的奇偶性和周期性点评:解决的关键是根据已知函数解析式俩分析确定奇偶性,那么同时结合图像的变换来得到周期,属于基础题2、A【解题分析】由题可得,根据正弦函数的性质即得.【题目详解】∵函数,∴函数为最小正周期为的奇函数.故选:A.3、A【解题分析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【题目详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.4、C【解题分析】根据二次函数和指数函数的图象和性质,分别求出两集合中函数的值域,求出两集合的交集即可【题目详解】由集合S中的函数y=3x>0,得到集合S={y|y>0};由集合T中的函数y=x2﹣1≥﹣1,得到集合T={y|y≥﹣1},则S∩T=S故选C【题目点拨】本题属于求函数值域,考查了交集的求法,属于基础题5、A【解题分析】表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【题目详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【题目点拨】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.6、B【解题分析】根据函数单调性的定义和性质分别进行判断即可【题目详解】解:对于选项A.的对称轴为,在区间上是减函数,不满足条件对于选项B.在区间上是增函数,满足条件对于选项C.在区间上是减函数,不满足条件对于选项D.在区间上是减函数,不满足条件故满足条件的函数是故选:B【题目点拨】本题主要考查函数单调性的判断,要求熟练掌握常见函数的单调性,属基础题7、C【解题分析】由三视图可知,该几何体为半个圆柱,故体积为.8、D【解题分析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围.【题目详解】函数在R上为减函数所以满足解不等式组可得.故选:D【题目点拨】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题.9、D【解题分析】本题主要考查不等关系.已知,所以,所以,故.故选10、C【解题分析】利用指数函数的单调性可判断AB选项的正误,利用对数函数的单调性可判断CD选项的正误.【题目详解】对于A选项,因为函数在上为增函数,则,A错;对于B选项,因为函数在上为减函数,则,B错;对于C选项,因为函数为上的增函数,则,C对;对于D选项,因为函数为上的减函数,则,D错.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】先求出,然后再求的值.【题目详解】由题意可得,所以,故答案为:12、【解题分析】由题意得13、②③⇒⑤;③④⇒⑤;②④⇒⑤【解题分析】利用不等式的性质和做差比较即可得到答案.【题目详解】由②③⇒⑤,因为,,则.由③④⇒⑤,由于,,则,所以.由②④⇒⑤,由于,且,则,所以.故答案为:②③⇒⑤;③④⇒⑤;②④⇒⑤14、【解题分析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【题目详解】因为已知是定义在R上的偶函数,所以由,又因为上单调递减,所以有.当时,;当时,.故答案为:【题目点拨】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.15、【解题分析】直接利用补集的定义求解【题目详解】因为全集,集合,所以,故答案为:16、【解题分析】根据直角三角形的外接圆的直径是直角三角形的斜边,结合球的对称性、勾股定理、直三棱柱的几何性质进行求解即可.【题目详解】因为,所以三角形是以为斜边的直角三角形,因此三角形的外接圆的直径为,圆心为.因为,所以,在直三棱柱中,侧面是矩形且它的中心即为球心O,球的直径是的长,则,所以球的半径为故答案为:【题目点拨】本题考查了直三棱柱外接球问题,考查了直观想象能力和数学运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)直接利用诱导公式化简即可;(2)根据诱导公式计算即可.【小问1详解】解:;【小问2详解】解:.18、(1)见解析;(2)见解析.【解题分析】(1)连接交于点,连接,可得为中位线,,结合线面平行的判定定理,得平面;(2)由底面,得,正三角形中,中线,结合线面垂直的判定定理,得平面,最后由面面垂直的判定定理,证出平面平面.【题目详解】(1)连接交于点,连接,则点为的中点为中点,得为中位线,,平面平面,∴直线平面;(2)证明:底面,,∵底面正三角形,是中点,平面,平面,∴平面平面【题目点拨】本题考查了直三棱柱的性质,线面平行的判定定理、面面垂直的判定定理,,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.19、(1)8台(2)【解题分析】(1)根据题意将问题转化为对的求解,利用基本不等式即可;(2)先求出一台机器人的最大日工作量,根据最大工作量再求出所需要的人数,通过比较即可求解.【小问1详解】由题意当且仅当,即时,等号成立,所以应购买8台,可使每台机器人的平均成本最低【小问2详解】由,可得当时,,所以时,每台机器人的日平均工作量最大时,安排的人工数最小为20人,而此时人工操作需要的人工数为,所以可减少20、k=0或1.【解题分析】讨论当k=0时和当k≠0时,两种情况,其中当k≠0时,只需Δ=64-64k=0即可.试题解析:当k=0时,原方程变为-8x+16=0,所以x=2,此时集合A中只有一个元素2.当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国耐火材料行业商业模式创新战略制定与实施研究报告
- 2025-2030年中国专业促销服务行业开拓第二增长曲线战略制定与实施研究报告
- 2025-2030年中国预应力混凝土用钢材行业并购重组扩张战略制定与实施研究报告
- 2025-2030年中国商用后厨设备服务行业商业模式创新战略制定与实施研究报告
- 2025-2030年中国旅居康养行业商业模式创新战略制定与实施研究报告
- 和黄医药出售非核心合资企业交易摘要 -战略性出售上海和黄药业45%股权聚焦抗体靶向偶联药物 (ATTC)平台
- 河北省石家庄市2024届部分名校高三上学期一调考试英语
- 粉煤灰陶粒项目可行性研究报告立项模板
- 来宾关于成立固体废物处理利用公司可行性报告
- 广东省深圳市2023-2024学年五年级上学期英语期末试卷
- 药物分离纯化-药物分离纯化技术的作用
- 《精益生产培训》课件
- GB/T 3518-2023鳞片石墨
- 22G101三维立体彩色图集
- 2024高中历史中外历史纲要下册重点知识点归纳总结(复习必背)
- MQL4命令中文详解手册
- 水平井施工方案及措施
- 资产评估常用数据与参数手册
- 分子影像学概论培训课件
- 小学四年级数学上册促销问题
- 国内外中学数学教学改革与发展
评论
0/150
提交评论