2024届江苏省连云港市海庆中学高一数学第一学期期末检测模拟试题含解析_第1页
2024届江苏省连云港市海庆中学高一数学第一学期期末检测模拟试题含解析_第2页
2024届江苏省连云港市海庆中学高一数学第一学期期末检测模拟试题含解析_第3页
2024届江苏省连云港市海庆中学高一数学第一学期期末检测模拟试题含解析_第4页
2024届江苏省连云港市海庆中学高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省连云港市海庆中学高一数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,,则集合与集合的关系是()A. B.C. D.2.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.3.如图所示的四个几何体,其中判断正确的是A.(1)不棱柱B.(2)是棱柱C.(3)是圆台D.(4)是棱锥4.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面不平行的是()A. B.C. D.5.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.下列函数中,既是奇函数又在区间上单调递增的是()A. B.C. D.7.已知,则的值为A. B.C. D.8.已知函数是定义在上的奇函数,当时,,则不等式的解集为()A. B.C.( D.9.设,,,则a,b,c的大小关系是()A. B.C. D.10.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递减区间为___________.12.已知定义在上的偶函数在上递减,且,则不等式的解集为__________13.已知在上的最大值和最小值分别为和,则的最小值为__________14.函数的值域是________15.函数零点的个数为______.16.不论为何实数,直线恒过定点__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且的解集为.(1)求函数的解析式;(2)设,若对于任意的、都有,求的最小值.18.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了,,三种放假方案,调查结果如下:支持方案支持方案支持方案35岁以下20408035岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.19.化简或求下列各式的值(1);(2)(lg5)2+lg5•lg20+20.已知函数,且满足.(1)判断函数在上的单调性,并用定义证明;(2)设函数,求在区间上的最大值;(3)若存在实数m,使得关于x的方程恰有4个不同的正根,求实数m的取值范围.21.已知函数.(1)若且的最小值为,求不等式的解集;(2)若当时,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】化简集合、,进而可判断这两个集合的包含关系.【题目详解】因为,,因此,.故选:D.2、C【解题分析】利用平面向量的线性运算及平面向量的基本定理求解即可【题目详解】∵∴∵∴=∴=,∴故选:C3、D【解题分析】直接利用多面体和旋转体的结构特征,逐一核对四个选项得答案解:(1)满足前后面互相平行,其余面都是四边形,且相邻四边形的公共边互相平行,∴(1)是棱柱,故A错误;(2)中不满足相邻四边形的公共边互相平行,∴(2)不是棱柱,故B错误;(3)中上下两个圆面不平行,不符合圆台的结构特征,∴(3)不是圆台,故C错误;(4)符合棱锥的结构特征,∴(4)是棱锥,故D正确故选D考点:棱锥的结构特征4、D【解题分析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误.【题目详解】对于A选项,如下图所示,连接,在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于B选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于C选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、中点,则,,平面,平面,平面;对于D选项,如下图所示,连接交于点,连接,连接交于点,若平面,平面,平面平面,则,则,由于四边形为正方形,对角线交于点,则为的中点,、分别为、的中点,则,且,则,,则,又,则,所以,与平面不平行;故选:D.【题目点拨】判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(,).5、A【解题分析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【题目详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.6、D【解题分析】利用是偶函数判定选项A错误;利用判定选项B错误;利用的定义域判定选项C错误;利用奇偶性的定义证明是奇函数,再通过基本函数的单调性判定的单调性,进而判定选项D正确.【题目详解】对于A:是偶函数,即选项A错误;对于B:是奇函数,但,所以在区间上不单调递增,即选项B错误;对于C:是奇函数,但的定义域为,,即选项C错误;对于D:因为,,有,即奇函数;因为在区间上单调递增,在区间上单调递增,所以在区间上单调递增,即选项D正确.故选:D.7、C【解题分析】利用同角三角函数的基本关系把原式的分母“1”变为sin2α+cos2α,然后给分子分母求除以cos2α,把原式化为关于tanα的关系式,把tanα的值代入即可求出值【题目详解】因为tanα=3,所以故选C【题目点拨】本题是一道基础题,考查学生灵活运用同角三角函数间的基本关系化简求值的能力,做题的突破点是“1”的灵活变形8、C【解题分析】根据奇偶性求分段函数的解析式,然后作出函数图象,根据单调性解不等式即可.【题目详解】因为当时,,且函数是定义在上的奇函数,所以时,,所以,作出函数图象:所以函数是上的单调递增,又因为不等式,所以,即,故选:C.9、C【解题分析】先判断,再判断得到答案.【题目详解】;;;,即故选:【题目点拨】本题考查了函数值的大小比较,意在考查学生对于函数性质的灵活运用.10、A【解题分析】利用充分条件和必要条件的定义判断即可【题目详解】,所以“”是“”的充分不必要条件故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用对数型复合函数性质求解即可.【题目详解】由题知:,解得或.令,则为减函数.所以,为减函数,为增函数,,为增函数,为减函数.所以函数的单调递减区间为.故答案为:12、【解题分析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理13、【解题分析】如图:则当时,即时,当时,原式点睛:本题主要考查了分段函数求最值问题,在定义域为动区间的情况下进行分类讨论,先求出最大值与最小值的情况,然后计算,本题的关键是要注意数形结合,结合图形来研究最值问题,本题有一定的难度14、##【解题分析】求出的范围,再根据对数函数的性质即可求该函数值域.【题目详解】,而定义域上递减,,无最小值,函数的值域为故答案为:.15、2【解题分析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【题目详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【题目点拨】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.16、【解题分析】直线整理可得.令,解得,即直线恒过定点点睛:直线恒过定点问题,一般就是将参数提出来,使得其系数和其他项均为零,即可得定点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)的最小值为.【解题分析】(1)利用根与系数的关系可求得、的值,即可得出函数的解析式;(2)利用二次函数和指数函数的基本性质可求得函数在区间上的最大值和最小值,由已知可得出,由此可求得实数的最小值.【小问1详解】解:因为的解集为,所以的根为、,由韦达定理可得,即,,所以.【小问2详解】解:由(1)可得,当时,,故当时,,因为对于任意的、都有,即求,转化为,而,,所以,.所以的最小值为.18、(1)(2)【解题分析】(1)根据分层抽样按比例抽取,列出方程,能求出n的值;(2)35岁以下有4人,35岁以上(含35岁)有1人.设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a,利用列举法能求出恰好有1人在35岁以上(含35岁)的概率.【题目详解】(1)根据分层抽样按比例抽取,得:,解得.(2)35岁以下:(人),35岁以上(含35岁):(人)设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为,,共10个样本点.设:恰好有1人在35岁以上(含35岁),有4个样本点,故.【题目点拨】本题考查概率的求法,分层抽样、古典概型、列举法等基础知识,考查运算求解能力,属于中档题.19、(1);(2)2【解题分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可【题目详解】(1)原式=;(2)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2【题目点拨】本题主要考查分数指数幂和对数的运算,考查对数的换底公式.意在考查学生对这些知识的理解掌握水平和计算能力.20、(1)见解析(2)时,.(3)【解题分析】(1)根据确定a.再任取两数,作差,通分并根据分子分母符号确定差的符号,最后根据定义确定函数单调性(2)先根据绝对值定义将函数化为分段函数,都可化为二次函数,再根据对称轴与定义区间位置关系确定最值,最后取两个最大值中较大值(3)先对方程变形得,设,转化为方程方程在有两个不等的根,根据二次函数图像,得实根分布条件,解得实数m的取值范围.试题解析:(1)由,得或0.因为,所以,所以.当时,,任取,且,则,因为,则,,所以在上为增函数;(2),当时,,因为,所以当时,;当时,,因为时,所以,所以当时,;综上,当即时,.(3)由(1)可知,在上为增函数,当时,.同理可得在上为减函数,当时,.方程可化为,即.设,方程可化为.要使原方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论