版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北容城博奥学校2024届高一数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在R上是单调函数,则的解析式可能为()A. B.C. D.2.已知集合则角α的终边落在阴影处(包括边界)的区域是()A. B.C. D.3.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视图是一个半圆内切于边长为的正方形.若该机器零件的表面积为,则的值为A.4 B.2C.8 D.64.下列四个图形中,不是以x为自变量的函数的图象是()A B.C. D.5.表示不超过x的最大整数,例如,,,.若是函数的零点,则()A.1 B.2C.3 D.46.过点且与直线平行的直线方程是()A. B.C. D.7.设定义在R上的函数满足,且,当时,,则A. B.C. D.8.已知则的值为()A. B.2C.7 D.59.A. B.C.2 D.410.函数的图像的一条对称轴是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.把物体放在冷空气中冷却,如果物体原来的温度是θ1,空气的温度是θ0℃,那么t后物体的温度θ(单位:)可由公式(k为正常数)求得.若,将55的物体放在15的空气中冷却,则物体冷却到35所需要的时间为___________.12.已知向量,,,则=_____.13.圆关于直线的对称圆的标准方程为___________.14.已知,且是第三象限角,则_____;_____15.函数的定义域为__________.16.若函数在区间上没有最值,则的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足平面,=.(1)证明:;(2)求点到平面的距离.18.已知函数是定义在R上的偶函数,当时,.(1)求函数的解析式;(2)画出函数的图像;(3)根据图像写出的单调区间和值域.19.已知函数.(1)若,解不等式;(2)解关于x的不等式.20.已知函数,(其中,,),的相邻两条对称轴间的距离为,且图象上一个最高点的坐标为.(Ⅰ)求的解析式;(Ⅱ)求的单调递减区间;(Ⅲ)当时,求的值域.21.已知直线的倾斜角为且经过点.(1)求直线的方程;(2)求点关于直线的对称点的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据条件可知当时,为增函数,在在为增函数,且,结合各选项进行分析判断即可【题目详解】当时,为增函数,则在上为增函数,且,A.在上为增函数,,故不符合条件;B.为减函数,故不符合条件;C.在上为增函数,,故符合条件;D.为减函数,故不符合条件.故选:C.2、B【解题分析】令,由此判断出正确选项.【题目详解】令,则,故B选项符合.故选:B【题目点拨】本小题主要考查用图像表示角的范围,考查终边相同的角的概念,属于基础题.3、A【解题分析】几何体为一个正方体与四分之一个球的组合体,所以表面积为,选A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用4、C【解题分析】根据函数中每一个自变量有且只有唯一函数值与之对应,结合函数图象判断符合函数定义的图象即可.【题目详解】由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.故选:C5、B【解题分析】利用零点存在性定理判断的范围,从而求得.【题目详解】在上递增,,所以,所以.故选:B6、D【解题分析】先由题意设所求直线为:,再由直线过点,即可求出结果.【题目详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【题目点拨】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.7、C【解题分析】结合函数的周期性和奇偶性可得,代入解析式即可得解.【题目详解】由,可得.,所以.由,可得.故选C.【题目点拨】本题主要考查了函数的周期性和奇偶性,着重考查了学生的转化和运算能力,属于中档题.8、B【解题分析】先算,再求【题目详解】,故选:B9、D【解题分析】因,选D10、C【解题分析】对称轴穿过曲线的最高点或最低点,把代入后得到,因而对称轴为,选.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】将数据,,,代入公式,得到,解指数方程,即得解【题目详解】将,,,代入得,所以,,所以,即.故答案为:212、【解题分析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【题目详解】因为向量,,所以则即解得故答案为:【题目点拨】本题考查了向量垂直的坐标关系,属于基础题.13、【解题分析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【题目详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【题目点拨】本题考查圆关于直线对称的圆,属于基础题14、①.##②.##0.96【解题分析】利用平方关系求出,再利用商数关系及二倍角的正弦公式计算作答.【题目详解】因,且是第三象限角,则,所以,.故答案为:;15、【解题分析】解不等式即可得出函数的定义域.【题目详解】对于函数,有,解得.因此,函数的定义域为.故答案为:.16、【解题分析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【题目详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【题目点拨】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】本题主要考查直线与平面、点到面的距离,考查空间想象能力、推理论证能力(1)证明:∵点E为的中点,且为直径∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴点到平面的距离点评:立体几何问题是高考中的热点问题之一,从近几年高考来看,立体几何的考查的分值基本是20分左右,其中小题一两题,解答题18、(1)(2)图像见解析(3)答案见解析【解题分析】(1)根据偶函数的性质即可求出;(2)根据解析式即可画出图像;(3)根据图像可得出.【小问1详解】因为是定义在R上的偶函数,当时,,则当时,,则,所以;【小问2详解】画出函数图像如下:【小问3详解】根据函数图像可得,的单调递减区间为,单调递增区间为,函数的值域为.19、(1);(2)答案见解析【解题分析】(1)由抛物线开口向上,且其两个零点为,,可得不等式的解集.(2)由对应的二次方程的判别式,其两根为,.讨论时,时,时,其两根的大小,由此可得不等式的解集.【题目详解】解:(1)当时,不等式可化为,又由,得,.因为抛物线开口向上,且其两个零点为,,所以不等式的解集为.(2)对于二次函数,其对应的二次方程的判别式,其两根为,.当,即时,不等式的解集为;当,即时,不等式的解集为;当,即时,不等式的解集为;综上,时,不等式的解集为;时,不等式无解;时,不等式的解集为.20、(1)(2)(3)【解题分析】(Ⅰ)由相邻两对称轴间距离是半个周期可求得,再由最高点为可得A,;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东理工学院《汽车工程制图》2023-2024学年第一学期期末试卷
- 广东科技学院《中学化学课程教学论》2023-2024学年第一学期期末试卷
- 广东理工职业学院《大气污染控制工程》2023-2024学年第一学期期末试卷
- 广东江门幼儿师范高等专科学校《蒸汽发生器热工水力计算课程设计》2023-2024学年第一学期期末试卷
- 广东环境保护工程职业学院《茶叶审评与检验》2023-2024学年第一学期期末试卷
- 广东工业大学《现代化学基础》2023-2024学年第一学期期末试卷
- 广安职业技术学院《零售管理实务》2023-2024学年第一学期期末试卷
- 《折旧的计算方法》课件
- 《绝密微信课程》课件
- 赣南师范大学《现代文与中学语文教学》2023-2024学年第一学期期末试卷
- 室分工程施工组织设计
- 薄膜衰减片的仿真设计
- 塔塔里尼调压器FLBM5介绍.ppt
- 国家开放大学毕业生登记表
- DLT724-2000 电力系统用蓄电池直流电源装置运行维护
- CCC例行检验和确认检验程序
- 初中物理竞赛教程(基础篇)第16讲比热容
- 亲子鉴定书(共3页)
- 容器支腿计算公式(支腿计算主要用于立式容器的支腿受力及地脚螺栓计算)
- 建设工程项目施工安全管理流程图3页
- 旋翼式煤泥干燥设备在平舒矿的应用
评论
0/150
提交评论