2024届西藏拉萨北京实验中学高一上数学期末调研试题含解析_第1页
2024届西藏拉萨北京实验中学高一上数学期末调研试题含解析_第2页
2024届西藏拉萨北京实验中学高一上数学期末调研试题含解析_第3页
2024届西藏拉萨北京实验中学高一上数学期末调研试题含解析_第4页
2024届西藏拉萨北京实验中学高一上数学期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届西藏拉萨北京实验中学高一上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则a,b,c的大小关系是A. B.C. D.2.已知函数,则()A. B.3C. D.3.在平面直角坐标系中,直线的斜率是()A. B.C. D.4.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是()A.德语 B.法语C.日语 D.英语5.若和都是定义在上的奇函数,则()A.0 B.1C.2 D.36.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B.C.90 D.817.已知函数是定义在上的偶函数,对任意,都有,当时,,则A. B.C.1 D.8.将化为弧度为A. B.C. D.9.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个10.已知实数a、b,满足,,则关于a、b下列判断正确的是()A.a<b<2 B.b<a<2C.2<a<b D.2<b<a二、填空题:本大题共6小题,每小题5分,共30分。11.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.12.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.13.若函数y=是函数的反函数,则_________________14.设函数即_____15.已知直线,则与间的距离为___________.16.已知,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求不等式的解集;(2)若时,不等式恒成立,求的取值范围.18.设函数的定义域为A,集合.(1);(2)若集合是的子集,求实数a的取值范围.19.假设你有一笔资金用于投资,年后的投资回报总利润为万元,现有两种投资方案的模型供你选择.(1)请在下图中画出的图像;(2)从总利润的角度思考,请你选择投资方案模型.20.如图,已知直线//,是直线、之间的一定点,并且点到直线、的距离分别为1、2,垂足分别为E、D,是直线上一动点,作,且使与直线交于点.试选择合适的变量分别表示三角形的直角边和面积S,并求解下列问题:(1)若为等腰三角形,求和的长;(2)求面积S最小值.21.设函数.(1)求函数在上的最小值;(2)若方程在上有四个不相等实根,求的范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用函数,,单调性,借助于0和1,即可对a、b、c比较大小,得到答案【题目详解】由题意,可知函数是定义域上的增函数,,又是定义域上的增函数,,又是定义域上的减函数,,所以,故选A【题目点拨】本题主要考查了函数值的比较大小问题,其中解答中熟记指数函数、对数函数的单调性,借助指数函数、对数函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解题分析】根据分段函数的解析式,令代入先求出,进而可求出的结果.【题目详解】解:,则令,得,所以.故选:D.3、A【解题分析】将直线转化成斜截式方程,即得得出斜率.【题目详解】解:由题得,原式可化为,斜率.故选:A.4、B【解题分析】根据题意,分“甲说对,乙、丙说错”、“乙说对,甲、丙说错”、“丙说对,甲、乙说错”三种情况进行分析,即可得到结果.【题目详解】若甲说对,乙、丙说错:甲说对,小明不会法语也不会日语;乙说错,则小明不会英语也不会法语;丙说错,则小明不会德语,由此可知,小明四门外语都不会,不符合题意;若乙说对,甲、丙说错:乙说对,则小明会英活或法语;甲说错,则小明会法语或日语;丙说错,小明不会德语;则小明会法语;若丙说对,甲、乙说错:丙说对,则小明会德语;甲说错,到小明会法语或日语;乙说错,则小明不会英语也不会法语;则小明会德语或日语,不符合题意;综上,小明会法语.故选:B.5、A【解题分析】根据题意可知是周期为的周期函数,以及,,由此即可求出结果.【题目详解】因为和都是定义在上的奇函数,所以,,所以,所以,所以是周期为周期函数,所以因为是定义在上的奇函数,所以,又是定义在上的奇函数,所以,所以,即,所以.故选:A.6、B【解题分析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:故选B点睛:本题考查知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.7、C【解题分析】由题意,故选C8、D【解题分析】根据角度制与弧度制的关系求解.【题目详解】因为,所以.故选:D.9、D【解题分析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【题目详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【题目点拨】本题考查线面平行关系,考查空间想象能力以及简单推理能力.10、D【解题分析】先根据判断a接近2,进一步对a进行放缩,,进而通过对数运算性质和基本不等式可以判断a>2;根据b的结构,构造函数,得出函数的单调性和零点,进而得到a,b的大小关系,最后再判断b和2的大小关系,最终得到答案.【题目详解】.构造函数:,易知函数是R上的减函数,且,由,可知:,又,∴,则a>b.又∵,∴a>b>2故选:D.【题目点拨】对数函数式比较大小通常借助中间量,除了0和1之外,其它的中间量需要根据题目进行分析,中间会用到指对数的运算性质和放缩法;另外,构造函数利用函数的单调性比较大小是比较常用的一种方法,需要我们对式子的结构进行仔细分析,平常注意归纳总结.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不止一个)【解题分析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:12、6【解题分析】直接利用f(x)的奇偶性和周期性求解.【题目详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点13、0【解题分析】可得,再代值求解的值即可【题目详解】的反函数为,则,则,则.故答案为:014、-1【解题分析】结合函数的解析式求解函数值即可.【题目详解】由题意可得:,则.【题目点拨】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值15、【解题分析】根据平行线间距离直接计算.【题目详解】由已知可得两直线互相平行,故,故答案为:.16、【解题分析】求得函数的最小正周期为,进而计算出的值(其中),再利用周期性求解即可.【题目详解】函数的最小正周期为,当时,,,,,,,所以,,,因此,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)把代入函数解析式,求解关于的一元二次不等式,进一步求解指数不等式得答案;(2)不等式恒成立,等价于恒成立,求出时的范围,可得,即可求出的取值范围【题目详解】解:(1)当时,即:,则不等式的解集为(2)∵由条件:∴∴恒成立∵即的取值范围是【题目点拨】解不等式的常见类型:(1)一一二次不等式用因式分解法或图像法;(2)指对数型不等式化为同底的结构,利用单调性解不等式;(3)解抽象函数型不等式利用函数的单调性18、(1);(2).【解题分析】(1)由函数的定义域、指数函数的性质可得,,再由集合的并集运算即可得解;(2)由集合的交集运算可得,再由集合的关系可得,即可得解.【题目详解】由可得,所以,,(1)所以;(2)因为,所以,所以,解得,所以实数a的取值范围为.【题目点拨】本题考查了函数定义域及指数不等式的求解,考查了集合的运算及根据集合间的关系求参数,属于基础题.19、(1)作图见解析(2)答案不唯一,具体见解析【解题分析】(1)根据指数函数描出几个特殊点,用平滑的曲线连接即可.(2)结合(1)中的图像,分析可得对于不同的值进行讨论即可求解.【题目详解】(1)(2)由图可知当时,;当时,当时,;当时,;当时,;所以当资金投资2年或4年时两种方案的回报总利润相同;当资金投资2年以内或4年以上,按照模型回报总利润为最大;当资金投资2年以上到4年以内,按照模型回报总利润最大.【题目点拨】本题考查了指数函数、二次函数模型的应用,属于基础题.20、(1),;(2)2.【解题分析】(1)根据相似三角形的判定定理和性质定理,结合等腰三角形的性质、勾股定理进行求解即可;(2)根据直角三角形面积公式,结合基本不等式进行求解即可.【小问1详解】由点到直线、的距离分别为1、2,得AE=1、AD=2,由,得,则,由题意得,在中,,从而,由和,得∽,则,即,在中,,在中,,由为等腰三角形,得,则且,故,.【小问2详解】由,,,得在中,,当且仅当即时等号成立,故面积S的最小值为2.21、(1)见解析;(2)【解题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论