甘肃省兰州新区舟曲中学2024届高一数学第一学期期末统考模拟试题含解析_第1页
甘肃省兰州新区舟曲中学2024届高一数学第一学期期末统考模拟试题含解析_第2页
甘肃省兰州新区舟曲中学2024届高一数学第一学期期末统考模拟试题含解析_第3页
甘肃省兰州新区舟曲中学2024届高一数学第一学期期末统考模拟试题含解析_第4页
甘肃省兰州新区舟曲中学2024届高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州新区舟曲中学2024届高一数学第一学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知关于的方程()的根为负数,则的取值范围是()A. B.C. D.2.设集合,函数,若,且,则的取值范围是()A. B.(,)C. D.(,1]3.下列关系中,正确的是()A. B.C D.4.条件p:|x|>x,条件q:,则p是q的()A.充要条件 B.既不充分也不必要条件C.必要不充分条件 D.充分不必要条件5.下列选项中,两个函数表示同一个函数的是()A., B.,C., D.,6.已知函数,若有且仅有两个不同实数,,使得则实数的值不可能为A. B.C. D.7.已知函数,若关于x的方程有五个不同实根,则m的值是()A.0或 B.C.0 D.不存在8.的值域是()A. B.C. D.9.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.10.若点在角的终边上,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________12.已知函数,则_________13.已知函数(且),若对,,都有.则实数a的取值范围是___________14.若不等式的解集为,则不等式的解集为______.15.已知函数,则的值为_________.16.设,,依次是方程,,的根,并且,则,,的大小关系是___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不等式.(1)求不等式的解集;(2)若当时,不等式总成立,求的取值范围.18.已知函数.(1)当时,求函数在区间上的值域;(2)求函数在区间上的最大值.19.已知偶函数.(1)求实数的值;(2)经过研究可知,函数在区间上单调递减,求满足条件的实数a的取值范围.20.已知函数.(1)判断函数在R上的单调性,并用单调性的定义证明;(2)判断函数的奇偶性,并证明;(3)若恒成立,求实数k的取值范围.21.已知函数,求:(1)的最小正周期及最大值;(2)若且,求的值;(3)若,在有两个不等的实数根,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【题目详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.2、B【解题分析】按照分段函数先求出,由和解出的取值范围即可.【题目详解】,则,∵,解得,又故选:B.3、B【解题分析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【题目详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B4、D【解题分析】解不等式得到p:,q:或,根据推出关系得到答案.【题目详解】由得:,所以p:,而,解得:或,故q:或,因为或,且或,故p是q的充分不必要条件故答案为:D5、C【解题分析】根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C【题目详解】A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=lnex=x的定义域为R,定义域和解析式都相同,是同一个函数;D.=|x-1|,=x-1,解析式不同,不是同一个函数故选C【题目点拨】本题考查同一函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同6、D【解题分析】利用辅助角公式化简,由,可得,根据在上有且仅有两个最大值,可求解实数的范围,从而可得结果【题目详解】函数;由,可得,因为有且仅有两个不同的实数,,使得所以在上有且仅有两个最大值,因为,,则;所以实数的值不可能为,故选D【题目点拨】本题主要考查辅助角公式的应用、三角函数的图象与性质的应用问题,也考查了数形结合思想,意在考查综合应用所学知识解答问题的能力,属于基础题7、C【解题分析】令,做出的图像,根据图像确定至多存在两个的值,使得与有五个交点时,的值或取值范围,进而转为求方程在的值或取值范围有解,利用一元二次方程根的分布,即可求解.【题目详解】做出图像如下图所示:令,方程,为,当时,方程没有实数解,当或时,方程有2个实数解,当,方程有4个实数解,当时,方程有3个解,要使方程方程有五个实根,则方程有一根为1,另一根为0或大于1,当时,有或,当时,,或,满足题意,当时,,或,不合题意,所以.故选:C.【题目点拨】本题考查复合方程的解,换元法是解题的关键,数形结合是解题的依赖,或直接用选项中的值代入验证,属于较难题.8、A【解题分析】先求得的范围,再由单调性求值域【题目详解】因,所以,又在时单调递增,所以当时,函数取得最大值为,所以值域是,故选:A.9、B【解题分析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【题目详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.10、A【解题分析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【题目详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【题目点拨】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解题分析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.12、1【解题分析】根据分段函数的定义即可求解.【题目详解】解:因为函数,所以,所以,故答案为:1.13、【解题分析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【题目详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:14、【解题分析】由三个二次的关系求,根据分式不等式的解法求不等式的解集.【题目详解】∵不等式的解集为∴,是方程的两根,∴,∴可化为∴∴不等式的解集为,故答案为:.15、【解题分析】,填.16、【解题分析】本题首先可以根据分别是方程的根得出,再根据即可得出,然后通过函数与函数的性质即可得出,最后得出结果【题目详解】因为,,,所以,因为,,所以,,因为函数与函数都是单调递增函数,前者在后者的上方,所以,综上所述,【题目点拨】本题考查方程的根的比较大小,通常可通过函数性质或者根的大致取值范围进行比较,考查函数思想,考查推理能力,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)利用对数函数的单调性以及真数大于零得出关于实数的不等式组,解出即可;(2)令,利用参变量分离法得出,求出函数在区间上的最小值,即可得出实数的取值范围.【题目详解】(1)由已知可得:,因此,原不等式解集为;(2)令,则原问题等价,且,令,可得,当时,即当时,函数取得最小值,即,.因此,实数的取值范围是.【题目点拨】本题考查对数不等式的求解,同时也考查了指数不等式恒成立问题,将问题在转化为二次不等式在区间上恒成立是解题的关键,考查化归与转化思想的应用,属于中等题.18、(1)(2)【解题分析】(1)利用二次函数的图象和性质求值域;(2)讨论对称轴与区间中点的大小关系,即可得答案;【题目详解】(1)由题意,当时,,又,对称轴为,,离对称轴较远,,的值域为.(2)由题意,二次函数开口向上,对称轴为,由数形结合知,(i)当,即时,;(ii)当,即时,,综上:.【题目点拨】本题考查一元二次函数的值域求解,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,求解时注意抛物线的开口方向及对称轴与区间的位置关系.19、(1)0(2)【解题分析】(1)首先求出函数的定义域,再根据偶函数的性质,利用特殊值求出参数的值,再代入检验即可;(2)根据偶函数的性质将函数不等式转化为自变量的不等式,解得即可.【小问1详解】解:由,有,可得函数的定义域为,,由函数为偶函数,有,解得.当时,,由,可知此时函数为偶函数,符合题意,由上知实数m的值为0;【小问2详解】解:由函数为偶函数,且函数在区间上单调递减,可得函数在区间上单调递增,若,有解得且,故实数a的取值范围为.20、(1)在R上的单调递增,证明见解析;(2)是奇函数,证明见解析;(3).【解题分析】(1)利用单调性的定义证明,任取,设,然后判断与0的大小,即可确定单调性.(2),直接利用函数奇偶性的定义判断;(3)利用函数是奇函数,将题设不等式转化为,再利用是上的单调增函数求解.【小问1详解】函数是增函数,任取,不妨设,,∵,∴,又,∴,即,∴函数是上的增函数.【小问2详解】函数为奇函数,证明如下:由解析式可得:,且定义域为关于原点对称,,∴函数是定义域内的奇函数.【小问3详解】由等价于,∵是上的单调增函数,∴,即恒成立,∴,解得.21、(1)函数的最小正周期为,最大值为;(2);(3).【解题分析】(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,利用正弦函数的有界性可求得函数的最大值;(2)求出的取值范围,由可得出,可得出,进而可求得角的值;(3)令,由可求得,由可得出,问题转化为直线与函数在上的图象有两个交点,数形结合可得出关于实数的不等式,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论