2024届浙江省杭州地区重点中学高一数学第一学期期末综合测试模拟试题含解析_第1页
2024届浙江省杭州地区重点中学高一数学第一学期期末综合测试模拟试题含解析_第2页
2024届浙江省杭州地区重点中学高一数学第一学期期末综合测试模拟试题含解析_第3页
2024届浙江省杭州地区重点中学高一数学第一学期期末综合测试模拟试题含解析_第4页
2024届浙江省杭州地区重点中学高一数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州地区重点中学高一数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A. B.-3C. D.32.若sinx<0,且sin(cosx)>0,则角是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.函数的部分图象如图所示,则的值分别是()A. B.C. D.4.一个袋中有个红球和个白球,现从袋中任取出球,然后放回袋中再取出一球,则取出的两个球同色的概率是A. B.C. D.5.已知直线:,:,:,若且,则的值为A. B.10C. D.26.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“”是全称量词命题;③命题“”的否定为“”;④命题“是的必要条件”是真命题;A.0 B.1C.2 D.37.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.8.用二分法求方程的近似解时,可以取的一个区间是A. B.C. D.9.光线由点P(2,3)射到直线上,反射后过点Q(1,1),则反射光线所在的直线方程为A. B.C. D.10.半径为,圆心角为的弧长为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为____________12.已知函数满足下列四个条件中的三个:①函数是奇函数;②函数在区间上单调递增;③;④在y轴右侧函数的图象位于直线上方,写出一个符合要求的函数________________________.13.等比数列中,,则___________14.设函数,则____________.15.当时,,则a的取值范围是________.16.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道总长度(即的周长)表示为的函数,并求出定义域;(2)问当取何值时,污水净化效果最好?并求出此时管道的总长度.(提示:.)18.已知集合,(1)当,求;(2)若,求的取值范围.19.已知(1)画出这个函数的图象(2)当0<a<2时f(a)>f(2),利用函数图象求出a的取值范围20.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s参考数据:,(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?21.已知函数的定义域为R,其图像关于原点对称,且当时,(1)请补全函数的图像,并由图像写出函数在R上的单调递减区间;(2)若,,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】利用同角三角函数关系式中的商关系进行求解即可.【题目详解】由,故选:B2、D【解题分析】根据三角函数角的范围和符号之间的关系进行判断即可【题目详解】∵﹣1≤cosx≤1,且sin(cosx)>0,∴0<cosx≤1,又sinx<0,∴角x为第四象限角,故选D【题目点拨】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键3、A【解题分析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【题目详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.4、D【解题分析】从袋中任取出球,然后放回袋中再取出一球,共有种方法,其中取出的两个球同色的取法有种,因此概率为选D.5、C【解题分析】由且,列出方程,求得,,解得的值,即可求解【题目详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以故选C【题目点拨】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题6、C【解题分析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【题目详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“”是全称量词命题;故②正确;对于③:命题,则,故③错误;对于④:可以推出,所以是的必要条件,故④正确;所以正确的命题为②④,故选:C7、D【解题分析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【题目详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【题目点拨】本题考查了幂函数的图象与性质的应用问题,是基础题8、A【解题分析】分析:根据零点存在定理进行判断详解:令,因为,,所以可以取的一个区间是,选A.点睛:零点存在定理的主要内容为区间端点函数值异号,是判断零点存在的主要依据.9、A【解题分析】设点关于直线的对称点为,则,解得,即对称点为,则反射光线所在直线方程即:故选10、D【解题分析】利用弧长公式即可得出【题目详解】解:,弧长cm故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、x+3y-5=0或x=-1【解题分析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,则,化为:3k﹣1=±(3k+3),解得k=﹣∴直线l的方程为:y﹣2=﹣(x+1),化为:x+3y﹣5=0综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1故答案为x+3y﹣5=0或x=﹣112、【解题分析】满足①②④的一个函数为,根据奇偶性以及单调性,结合反比例函数的性质证明①②④.【题目详解】满足①②④对于①,函数的定义域为关于原点对称,且,即为奇函数;对于②,任取,且因为,所以,即函数在区间上单调递增;对于④,令,当时,,即在y轴右侧函数的图象位于直线上方故答案为:【题目点拨】关键点睛:解决本题的关键在于利用定义证明奇偶性以及单调性.13、【解题分析】等比数列中,由可得.等比数列,构成以为首项,为公比的等比数列,所以【题目点拨】若数列为等比数列,则构成等比数列14、【解题分析】依据分段函数定义去求的值即可.【题目详解】由,可得,则由,可得故答案为:15、【解题分析】分类讨论解一元二次不等式,然后确定参数范围【题目详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:16、.【解题分析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【题目详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【题目点拨】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),定义域为.(2)当或时所铺设的管道最短,为米.【解题分析】(1)如图,因为都是直角三角形,故可以得到,也就是,其中.(2)可变形为,令后,则有,其中,故取的最大值米.【题目详解】(1).由于,,所以,故.管道的总长度,定义域为.(2).设,则,由于,所以.因为在内单调递减,于是当时,取的最大值米.(此时或).答:当或时所铺设的管道最短,为米.【题目点拨】在三角变换中,注意之间有关系,如,,三者中知道其中一个,必定可以求出另外两个.18、(1)(2)【解题分析】(1)首先求出集合,然后根据集合的交集运算可得答案;(2)分、两种情况讨论求解即可.【小问1详解】因为,所以因为,所以【小问2详解】当,即,时,符合题意当时可得或,解得或综上,的取值范围为19、(1)见解析;(2){a|0<a<}.【解题分析】(1)由函数整体加绝对值知,只需将函数位于x轴下方的图像关于x对称即可;(2)利用数形结合,结合a范围即可得解.【题目详解】(1)如图:​(2)令f(a)=f(2),即|log3a|=|log32|,解得a=或a=2.从图像可知,当0<a<时,满足f(a)>f(2),所以a的取值范围是{a|0<a<}.【题目点拨】本题主要考查了对数函数的图象及图象变换,利用数形结合解不等式.20、(1)m/s(2)45【解题分析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可.【小问1详解】当总质比为230时,,即A型火箭的最大速度为.【小问2详解】A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论