重庆市万州二中2024届数学高一上期末联考模拟试题含解析_第1页
重庆市万州二中2024届数学高一上期末联考模拟试题含解析_第2页
重庆市万州二中2024届数学高一上期末联考模拟试题含解析_第3页
重庆市万州二中2024届数学高一上期末联考模拟试题含解析_第4页
重庆市万州二中2024届数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市万州二中2024届数学高一上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点在原点,始边与轴的正半轴重合,终边经过点,则()A. B.C. D.2.已知函数幂函数,且在其定义域内为单调函数,则实数()A. B.C.或 D.3.定义在上的奇函数满足,且当时,,则()A. B.2C. D.4.已知函数为偶函数,且在上单调递增,,则不等式的解集为()A. B.C. D.5.设集合,则中元素的个数为()A.0 B.2C.3 D.46.已知,都为单位向量,且,夹角的余弦值是,则A. B.C. D.7.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值为A. B.C. D.8.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个9.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.10.函数的图像的大致形状是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______12.已知,且,写出一个满足条件的的值___________13.如果函数仅有一个零点,则实数的值为______14.若函数y=loga(2-ax)在[0,1]上单调递减,则a的取值范围是________15.已知集合,,则集合________.16.设奇函数对任意的,,有,且,则的解集___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求方程的解集;(2)定义:.已知定义在上的函数,求函数的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数的简图,并根据图象写出函数的单调区间和最小值.18.已知向量,,.(Ⅰ)若关于的方程有解,求实数的取值范围;(Ⅱ)若且,求.19.已知函数.(1)若且的最小值为,求不等式的解集;(2)若当时,不等式恒成立,求实数的取值范围.20.已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域21.已知函数(1)证明:函数在上是增函数;(2)求在上的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】先利用三角函数的恒等变换确定点P的坐标,再根据三角函数的定义求得答案.【题目详解】,,即,则,故选:D.2、A【解题分析】由幂函数的定义可得出关于的等式,求出的值,然后再将的值代入函数解析式进行检验,可得结果.【题目详解】因为函数为幂函数,则,即,解得或.若,函数解析式为,该函数在定义域上不单调,舍去;若,函数解析式,该函数在定义域上为增函数,合乎题意.综上所述,.故选:A.3、D【解题分析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【题目详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【题目点拨】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题4、A【解题分析】由题可得函数在上单调递减,,且,再利用函数单调性即得.【题目详解】因为函数为偶函数且在上单调逆增,,所以函数在上单调递减,,且,所以,所以,解得或,即的取值范围是.故选:A.5、B【解题分析】先求出集合,再求,最后数出中元素的个数即可.【题目详解】因集合,,所以,所以,则中元素的个数为2个.故选:B6、D【解题分析】利用,结合数量积的定义可求得的平方的值,再开方即可【题目详解】依题意,,故选D【题目点拨】本题考查了平面向量数量积的性质及其运算,属基础题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.7、A【解题分析】方法一:当且时,由,得,令,则是周期为的函数,所以,当时,由得,,又是偶函数,所以,所以,所以,所以.选A方法二:当时,由得,,即,同理,所以又当时,由,得,因为是偶函数,所以,所以.选A点睛:解决抽象函数问题的两个注意点:(1)对于抽象函数的求函数值的问题,可选择定义域内的恰当的值求解,即要善于用取特殊值的方法求解函数值(2)由于抽象函数的解析式未知,故在解题时要合理运用条件中所给出的性质解题,有时在解题需要作出相应的变形8、A【解题分析】对于①:利用棱台的定义进行判断;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.即可判断;对于③:举反例:底面的菱形,各侧面都是正方形的四棱柱不是正方体.即可判断;对于④:利用圆锥的性质直接判断.【题目详解】对于①:棱台是棱锥过侧棱上一点作底面的平行平面分割而得到的.而两个面平行且相似,其余各面都是梯形的多面体中,把梯形的腰延长后,有可能不交于一点,就不是棱台.故①错误;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.故②错误;对于③:各侧面都是正方形的四棱柱中,如果底面的菱形,一定不是正方体.故③错误;对于④:圆锥的轴截面是等腰三角形.是正确的.故④正确.故选:A9、C【解题分析】由题意得:或,故选C.考点:直线平行的充要条件10、D【解题分析】化简函数解析式,利用指数函数的性质判断函数的单调性,即可得出答案.【题目详解】根据,是减函数,是增函数.在上单调递减,在上单调递增故选:D.【题目点拨】本题主要考查了根据函数表达式求函数图象,解题关键是掌握指数函数图象的特征,考查了分析能力和计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用求解向量间的夹角即可【题目详解】因为,所以,因为,所以,即,所以,所以,因为向量夹角取值范围是,所以向量与向量的夹角为【题目点拨】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意12、π(答案不唯一)【解题分析】利用,可得,又,确定可得结果.【题目详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)13、【解题分析】利用即可得出.【题目详解】函数仅有一个零点,即方程只有1个根,,解得.故答案为:.14、(1,2)【解题分析】分类讨论得到当时符合题意,再令在[0,1]上恒成立解出a的取值范围即可.【题目详解】令,当时,为减函数,为减函数,不合题意;当时,为增函数,为减函数,符合题意,需要在[0,1]上恒成立,当时,成立,当时,恒成立,即,综上.故答案为:(1,2).15、【解题分析】根据集合的交集运算,即可求出结果.【题目详解】因为集合,,所以.故答案为:.16、【解题分析】可根据函数的单调性和奇偶性,结合和,分析出的正负情况,求解.【题目详解】对任意,,有故在上为减函数,由奇函数的对称性可知在上为减函数,则则,,,;,;,;,.故解集为:故答案为:【题目点拨】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)图象见解析,单调递减区间是,单调递增区间是,最小值为1【解题分析】(1)根据题意可得,平方即可求解.(2)由题意比较与大小,从而可得出答案.(3)由(2)得到的函数关系,作出函数图像,根据图像可得函数的单调区间和最小值.【小问1详解】由,得且,解得,;所以方程的解集为【小问2详解】由已知得.【小问3详解】函数的图象如图实线所示:函数的单调递减区间是,单调递增区间是,其最小值为1.18、(1)(2)【解题分析】(Ⅰ)向量,,,所以.关于的方程有解,即关于的方程有解.因为,所以当时,方程有解,即解得实数的取值范围;(Ⅱ)因为,所以,即.当时,,由,解得当时,,由,解得.试题解析:(Ⅰ)∵向量,,,∴.关于的方程有解,即关于的方程有解.∵,∴当时,方程有解.则实数的取值范围为.(Ⅱ)因为,所以,即.当时,,.当时,,.19、(1);(2).【解题分析】(1)利用二次函数的最值可求得正数的值,再利用二次不等式的解法解不等式,即可得解;(2)令,根据题意可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:的图象是对称轴为,开口向上的抛物线,所以,,因为,解得,由得,即,得,因此,不等式的解集为.【小问2详解】解:由得,设函数,因为函数的图象是开口向上的抛物线,要使当时,不等式恒成立,即在上恒成立,则,可得,解得.20、(1);;(2).【解题分析】(1)根据的零点求出,的值,得出函数的解析式,然后解二次不等式即可;(2)利用换元法,令,则,然后结合二次函数的图象及性质求出最值.【题目详解】(1)由题意得,解得所以当时,即,.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论