2024届浙江省嵊州市高级中学高一数学第一学期期末综合测试试题含解析_第1页
2024届浙江省嵊州市高级中学高一数学第一学期期末综合测试试题含解析_第2页
2024届浙江省嵊州市高级中学高一数学第一学期期末综合测试试题含解析_第3页
2024届浙江省嵊州市高级中学高一数学第一学期期末综合测试试题含解析_第4页
2024届浙江省嵊州市高级中学高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省嵊州市高级中学高一数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四个函数中,在其定义域上既是奇函数又是增函数的是()A. B.y=tanxC.y=lnx D.y=x|x|2.若,且则与的夹角为()A. B.C. D.3.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.4.设,,,则a,b,c的大小关系为()A. B.C. D.5.直线的倾斜角A. B.C. D.6.若都是锐角,且,,则的值是A. B.C. D.7.已知,则的大小关系是A. B.C. D.8.如图,网格纸的各小格都是正方形(边长为1),粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体的表面积为()A. B.C. D.9.下列向量的运算中,正确的是A. B.C. D.10.若:,则成立的一个充分不必要条件是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-112.如图,在直四棱柱中,当底面ABCD满足条件___________时,有.(只需填写一种正确条件即可)13.函数的最小值为______.14.已知正数、满足,则的最大值为_________15.已知一个圆锥的母线长为1,其高与母线的夹角为45°,则该圆锥的体积为____________.16.如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=AB,则下列结论正确的是_____.(填序号)①PB⊥AD;②平面PAB⊥平面PBC;③直线BC∥平面PAE;④sin∠PDA三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数部分图象如图所示.(1)当时,求的最值;(2)设,若关于的不等式恒成立,求实数的取值范围.18.已知函数(1)求的最小正周期;(2)若,,求的值19.如图,是正方形,直线底面,,是的中点.(1)证明:直线平面;(2)求直线与平面所成角的正切值.20.已知向量,,,,函数,的最小正周期为(1)求的单调增区间;(2)方程;在上有且只有一个解,求实数n的取值范围;(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由21.如图,在平面直角坐标系中,为单位圆上一点,射线OA绕点O按逆时针方向旋转后交单位圆于点B,点B的纵坐标y关于的函数为.(1)求函数的解析式,并求;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由奇偶性排除AC,由增减性排除B,D选项符合要求.【题目详解】,不是奇函数,排除AC;定义域为,而在上为增函数,故在定义域上为增函数的说法是不对的,C错误;满足,且在R上为增函数,故D正确.故选:D2、C【解题分析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角3、A【解题分析】根据解析式可直接判断出单调性和奇偶性.【题目详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.4、A【解题分析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【题目详解】由题意知,,即,,即,,又,即,∴故选:A5、A【解题分析】先求得直线的斜率,然后根据斜率和倾斜角的关系,求得.【题目详解】可得直线的斜率为,由斜率和倾斜角的关系可得,又∵∴故选:A.【题目点拨】本小题主要考查直线倾斜角与斜率,属于基础题.6、A【解题分析】由已知得,,故选A.考点:两角和的正弦公式7、B【解题分析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【题目详解】,,,,故选B.【题目点拨】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.8、B【解题分析】根据三视图的法则:长对正,高平齐,宽相等;可得几何体如右图所示,这是一个三棱柱.表面积为:故答案为B.9、C【解题分析】利用平面向量的三角形法则进行向量的加减运算,即可得解.【题目详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误.故选:C.【题目点拨】本题考查平面向量的三角形法则,属于基础题.解题时,要注意向量的起点和终点.10、C【解题分析】根据不等式的解法求得不等式的解集,结合充分条件、必要条件的判定方法,即可求解.【题目详解】由题意,不等式,可得,解得,结合选项,不等式的一个充分不必要条件是.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、D【解题分析】设平均增长率为x,由题得故填.12、(答案不唯一)【解题分析】直四棱柱,是在上底面的投影,当时,可得,当然底面ABCD满足的条件也就能写出来了.【题目详解】根据直四棱柱可得:∥,且,所以四边形是矩形,所以∥,同理可证:∥,当时,可得:,且底面,而底面,所以,而,从而平面,因为平面,所以,所以当满足题意.故答案为:.13、【解题分析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【题目详解】所以令,则因此当时,取最小值,故答案为:【题目点拨】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.14、【解题分析】利用均值不等式直接求解.【题目详解】因为且,所以,即,当且仅当,即时,等号成立,所以的最大值为.故答案为:.15、##【解题分析】由题可得,然后利用圆锥的体积公式即得.【题目详解】设圆锥的底面半径为r,高为h,由圆锥的母线长为1,其高与母线的夹角为45°,∴,∴该圆锥的体积为.故答案为:.16、④【解题分析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.【题目详解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD与AB成60°,∴①不成立,过A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正确;BC与AE是相交直线,所以BC一定不与平面PAE平行,所以③不正确;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正确;故答案为:④【题目点拨】本题考查线面位置关系判定与证明,考查线线角,属于基础题.熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】(1)根据正弦型图像的性质求出函数解析式,在根据求出函数最值;(2)求出g(x)解析式,令,利用二次函数根分布解题即可.【小问1详解】由图象可知,又.,又,.由,得.当,即时,;当,即时,.【小问2详解】,则.令,原不等式转化为对恒成立.令,则,解得综上,实数的取值范围为.18、(1)(2)【解题分析】(1)根据二倍角的正、余弦公式和辅助角公式化简计算可得,结合公式计算即可;(2)根据同角三角函数的基本关系和角的范围求出,根据和两角和的正弦公式直接计算即可.【小问1详解】最小正周期【小问2详解】,因为,,若,则,不合题意,又,所以,因为,所以,所以19、(1)证明见解析;(2);【解题分析】(1)连接,由三角形中位线可证得,根据线面平行判定定理可证得结论;(2)根据线面角定义可知所求角为,且,由长度关系可求得结果.【题目详解】(1)连接,交于,连接四边形为正方形为中点,又为中点平面,平面平面(2)平面直线与平面所成角即为设,则【题目点拨】本题考查立体几何中线面平行关系的证明、直线与平面所成角的求解;证明线面平行关系常采用两种方法:(1)在平面中找到所证直线的平行线;(2)利用面面平行的性质证得线面平行.20、(1),(2)或(3)存在,且m取值范围为【解题分析】(1)函数,的最小正周期为.可得,即可求解的单调增区间(2)根据x在上求解的值域,即可求解实数n的取值范围;(3)由题意,求解最小值,利用换元法求解的最小值,即可求解m的范围【题目详解】(1)函数f(x)•1=2sin2(ωx)cos(2ωx)﹣1=sin(2ωx)cos(2ωx)=2sin(2ωx)∵f(x)的最小正周期为π.ω>0∴,∴ω=1那么f(x)的解析式f(x)=2sin(2x)令2x,k∈Z得:x∴f(x)的单调增区间为[,],k∈Z(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一个解,转化为函数y=f(x)+1与函数y=2n只有一个交点∵x在[0,]上,∴(2x)那么函数y=f(x)+1=2sin(2x)+1的值域为[,3],结合图象可知函数y=f(x)+1与函数y=2n只有一个交点那么2n<2或2n=3,可得或n=(3)由(1)可知f(x)=2sin(2x)∴f(x2)min=﹣2实数m满足对任意x1∈[﹣1,1],都存在x2∈R,使得m()+1>f(x2)成立即m()+1>﹣2成立令ym()+1设t,那么()2+2=t2+2∵x1∈[﹣1,1],∴t∈[,],可得t2+mt+5>0在t∈[,]上成立令g(t)=t2+mt+5>0,其对称轴t∵t∈[,]上,∴①当时,即m≥3时,g(t)min=g(),解得;②当,即﹣3<m<3时,g(t)min=g()0,解得﹣3<m<3;③当,即m≤﹣3时,g(t)min=g()0,解得m≤﹣3;综上可得,存在m,可知m的取值范围是(,)【题目点拨】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.同时考查了二次函数的最值的讨论和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论