




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省泉州市德化第一中学高一数学第一学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向左平移个单位长度,所得图象的函数解析式为A. B.C. D.2.直线经过第一、二、四象限,则a、b、c应满足()A. B.C. D.3.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间(单位:天)与病情爆发系数之间,满足函数模型:,当时,标志着疫情将要大面积爆发,则此时约为()(参考数据:)A. B.C. D.4.已知点在函数的图象上,则下列各点也在该函数图象上的是()A. B.C. D.5.已知偶函数在上单调递增,且,则的解集是()A. B.或C.或 D.或6.已知全集,集合,图中阴影部分所表示的集合为A. B.C. D.7.已知,,,则A. B.C. D.8.函数的单调递增区间为()A. B.C. D.9.已知.则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面一枚反面的概率为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若存在,使得,则的取值范围为_____________.12.已知函数对于任意,都有成立,则___________13.函数关于直线对称,设,则________.14.已知直线平行,则实数的值为____________15.若向量,,且,则_____16.已知函数,若有解,则m的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,若函数的图象过点,(1)求的值;(2)若,求实数的取值范围;(3)若函数有两个零点,求实数的取值范围.18.已知函数(且)的图像过点.(1)求a的值;(2)求不等式的解集.19.某地政府为增加农民收入,根据当地地域特点,积极发展农产品加工业,经过市场调查,加工某农品需投入固定成本2万元,每加工万千克该农产品,需另投入成本万元,且.已知加工后的该农产品每千克售价为6元,且加工后的该农产品能全部销售完.(1)求加工该农产品的利润(万元)与加工量(万千克)的函数关系;(2)当加工量小于6万千克时,求加工后的农产品利润的最大值.20.(1)已知,,求的值;(2)若,求的值.21.在单位圆中,已知第二象限角的终边与单位圆的交点为,若.(1)求、、的值;(2)分别求、、的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】依题意将函数的图象向左平移个单位长度得到:故选2、A【解题分析】根据直线经过第一、二、四象限判断出即可得到结论.【题目详解】由题意可知直线的斜率存在,方程可变形为,∵直线经过第一、二、四象限,∴,∴且故选:A.3、B【解题分析】根据列式求解即可得答案.【题目详解】解:因为,,所以,即,所以,由于,故,所以,所以,解得.故选:B.【题目点拨】本题解题的关键在于根据题意得,再结合已知得,进而根据解方程即可得答案,是基础题.4、D【解题分析】由题意可得,再依次验证四个选项的正误即可求解.【题目详解】因为点在函数的图象上,所以,,故选项A不正确;,故选项B不正确;,故选项C不正确;,故选项D正确.故选:D5、B【解题分析】由已知和偶函数的性质将不等式转化为,再由其单调性可得,解不等式可得答案【题目详解】因为,则,所以,因为为偶函数,所以,因为在上单调递增,所以,解得或,所以不等式的解集为或,故选:B6、A【解题分析】由题意可知,阴影部分所表示的元素属于,不属于,结合所给的集合求解即可确定阴影部分所表示的集合.【题目详解】由已知中阴影部分在集合中,而不在集合中,故阴影部分所表示的元素属于,不属于(属于的补集),即.【题目点拨】本题主要考查集合表示方法,Venn图及其应用等知识,意在考查学生的转化能力和计算求解能力.7、A【解题分析】故选8、C【解题分析】由解出范围即可.【题目详解】由,可得,所以函数的单调递增区间为,故选C.9、A【解题分析】求解出成立的充要条件,再与分析比对即可得解.【题目详解】,,则或,由得,由得,显然,,所以“”是“”的充分不必要条件.故选:A【题目点拨】结论点睛:充分不必要条件的判断:p是q的充分不必要条件,则p对应集合是q对应集合的真子集.10、C【解题分析】用列举法得出:抛掷三枚古钱币出现的基本事件的总数,进而可得出所求概率.【题目详解】抛掷三枚古钱币出现的基本事件共有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反8中,其中出现两正一反的共有3种,故概率为.故选C【题目点拨】本题主要考查古典概型,熟记概率的计算公式即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【题目详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【题目点拨】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.12、##【解题分析】由可得时,函数取最小值,由此可求.【题目详解】,其中,.因为,所以,,解得,,则故答案为:.13、1【解题分析】根据正弦及余弦函数的对称性的性质可得的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心,即可求值.【题目详解】∵函数f(x)的图象关于x对称∵f(x)=3sin(ωx+φ)的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心故有则1故答案为1【题目点拨】本题考查了正弦及余弦函数的性质属于基础题14、【解题分析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出【题目详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=x+,y=+,∵两条直线平行,∴,≠,解得m=﹣7综上可得:m=﹣7故答案为﹣7【题目点拨】本题考查了分类讨论、两条直线平行的充要条件,属于基础题15、6【解题分析】本题首先可通过题意得出向量以及向量的坐标表示和向量与向量之间的关系,然后通过向量平行的相关性质即可得出结果。【题目详解】因为,,且,所以,解得。【题目点拨】本题考查向量的相关性质,主要考查向量平行的相关性质,若向量,,,则有,锻炼了学生对于向量公式的使用,是简单题。16、【解题分析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【题目详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【题目点拨】本题考查函数与方程的应用,考查转化思想有解计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2).(3).【解题分析】(1)由函数过点,代入函数即可得的值;(2)由可得的取值范围;(3)由函数的大致图象即可得的取值范围.试题解析:(1),,,.(2),,.(3)当时,是减函数,值域为.偶函数,时,是增函数,值域为,函数有两个零点时,.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识18、(1)(2)【解题分析】(1)代入点坐标计算即可;(2)根据定义域和单调性即可获解【小问1详解】依题意有∴.【小问2详解】易知函数在上单调递增,又,∴解得.∴不等式的解集为.19、(1);(2)万元.【解题分析】(1)按照利润=销售额-利润计算即可;(2)当加工量小于6万千克,求二次函数的最值即可.【小问1详解】当时,,当时,,故加工该农产品的利润(万元)与加工量(万千克)的函数关系为;【小问2详解】当加工量小于6万千克时,,当时,农产品利润取得最大值万元.20、(1);(2).【解题分析】(1)由条件利用同角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJG(烟草)30-2016卷烟端部落丝测定仪检定规程振动法
- 2025年美术教师编制考试模拟试卷:美术教师教学研究能力试题集
- 考研复习-风景园林基础考研试题【各地真题】附答案详解
- 风景园林基础考研资料试题及参考答案详解ab卷
- 泰州市2024-2025学年五年级下学期数学期末试题一(有答案)
- 2025年河北省定州市辅警招聘考试试题题库及答案详解(必刷)
- 2024年演出经纪人之演出经纪实务押题练习试卷【必刷】 (一)
- 化学●福建卷丨2022年福建省普通高中学业水平选择性考试化学试卷及答案
- Brand KPIs for online betting:KTO in Brazil-英文培训课件2025.5
- 初中数学九年级下册统编教案 6.2黄金分割
- 东南大学强基试题及答案
- 复杂应用的C语言设计考题及答案
- 中华护理学会团体标准|2024 针刺伤预防与处理课件
- 国家开放大学国开电大《健康管理实务》形考及期末终考题库
- 2025安全生产月全员安全主题宣讲课件二十六(41ye)
- 浙江省杭州市保俶塔中学2025届八下数学期末经典试题含解析
- 事故隐患内部报告奖励制度
- 2025新人教版英语七年级下不规则动词表
- 2024年高考真题-地理(河北卷) 含答案
- JT-T-1180.2-2018交通运输企业安全生产标准化建设基本规范第2部分:道路旅客运输企业
- 西方文论经典导读智慧树知到期末考试答案章节答案2024年浙江大学
评论
0/150
提交评论