版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市海安市海安高级中学2024届高一数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若角,均为锐角,,,则()A. B.C. D.2.已知,求().A.6 B.7C.8 D.93.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.4.下列函数是奇函数,且在区间上是增函数的是A. B.C. D.5.已知函数,若方程有8个相异实根,则实数b的取值范围为()A. B.C. D.6.已知集合,则=A. B.C. D.7.已知是角的终边上的点,则()A. B.C. D.8.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b9.下列函数中,是偶函数,且在区间上单调递增的为()A. B.C. D.10.圆与圆的位置关系为()A.相离 B.相交C.外切 D.内切二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.12.已知集合,,则=______13.已知幂函数在为增函数,则实数的值为___________.14.若函数在区间上单调递减,在上单调递增,则实数的取值范围是_________15.函数的定义域为____16.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,两相邻对称中心之间的距离为(1)求函数的最小正周期和的解析式.(2)求函数的单调递增区间.18.在中,角的对边分别为,的面积为,已知,,(1)求值;(2)判断的形状并求△的面积19.已知函数.(1)求其最小正周期和对称轴方程;(2)当时,求函数的单调递减区间和值域.20.已知函数(1)若,求不等式的解集;(2)若时,不等式恒成立,求的取值范围.21.设函数的定义域为集合的定义域为集合(1)当时,求;(2)若“”是“”的必要条件,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【题目详解】角,均为锐角,即,而,则,又,则,所以,.故选:B2、B【解题分析】利用向量的加法规则求解的坐标,结合模长公式可得.【题目详解】因为,所以,所以.故选:B.【题目点拨】本题主要考查平面向量的坐标运算,明确向量的坐标运算规则是求解的关键,侧重考查数学运算的核心素养.3、C【解题分析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【题目详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【题目点拨】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.4、B【解题分析】逐一考查所给函数的单调性和奇偶性即可.【题目详解】逐一考查所给函数的性质:A.,函数为奇函数,在区间上不具有单调性,不合题意;B.,函数为奇函数,在区间上是增函数,符合题意;C.,函数为非奇非偶函数,在区间上是增函数,不合题意;D.,函数为奇函数,在区间上不具有单调性,不合题意;本题选择B选项.【题目点拨】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.5、B【解题分析】画出的图象,根据方程有个相异的实根列不等式,由此求得的取值范围.【题目详解】画出函数的图象如图所示,由题意知,当时,;当时,.令,则原方程化为.∵方程有8个相异实根,∴关于t的方程在上有两个不等实根.令,,∴,解得.故选:B6、B【解题分析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.7、A【解题分析】根据三角函数的定义求解即可.【题目详解】因为为角终边上的一点,所以,,,所以故选:A8、A【解题分析】直接判断范围,比较大小即可.【题目详解】,,,故a>b>c.故选:A.9、D【解题分析】根据基本初等函数的奇偶性及单调性逐一判断.【题目详解】A.在其定义域上为奇函数;B.,在区间上时,,其为单调递减函数;C.在其定义域上为非奇非偶函数;D.的定义域为,在区间上时,,其为单调递增函数,又,故在其定义域上为偶函数.故选:D.10、A【解题分析】通过圆的标准方程,可得圆心和半径,通过圆心距与半径的关系,可得两圆的关系.【题目详解】圆,圆心,半径为;,圆心,半径为;两圆圆心距,所以相离.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【题目详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【题目点拨】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想12、{-1,1,2};【解题分析】=={-1,1,2}13、4【解题分析】根据幂函数的定义和单调性,即可求解.【题目详解】解:为递增的幂函数,所以,即,解得:,故答案为:414、【解题分析】反比例函数在区间上单调递减,要使函数在区间上单调递减,则,还要满足在上单调递增,故求出结果【题目详解】函数根据反比例函数的性质可得:在区间上单调递减要使函数在区间上单调递减,则函数在上单调递增则,解得故实数的取值范围是【题目点拨】本题主要考查了函数单调性的性质,需要注意反比例函数在每个象限内是单调递减的,而在定义域内不是单调递减的15、【解题分析】本题首先可以通过分式的分母不能为以及根式的被开方数大于等于来列出不等式组,然后通过计算得出结果【题目详解】由题意可知,解得或者,故定义域为【题目点拨】本题考查函数的定义域的相关性质,主要考查函数定义域的判断,考查计算能力,考查方程思想,是简单题16、或或【解题分析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【题目详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【题目点拨】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】(1)根据相邻对称中心之间间隔可求得最小正周期和,由此可得解析式;(2)令,解不等式即可得到所求单调递增区间.小问1详解】两相邻对称中心之间的距离为,的最小正周期,,解得:,;【小问2详解】令,解得:,的单调递增区间为.18、(1);(2)是等腰三角形,其面积为【解题分析】(1)由结合正弦面积公式及余弦定理得到,进而得到结果;(2)由结合内角和定理可得分两类讨论即可.试题解析:(1),由余弦定理得,(2)即或(ⅰ)当时,由第(1)问知,是等腰三角形,(ⅱ)当时,由第(1)问知,又,矛盾,舍.综上是等腰三角形,其面积为点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.19、(1)最小正周期为,对称轴方程;(2)单调递减区间为,值域为.【解题分析】(1)利用倍角公式、辅助角公式化简函数,结合正弦函数的性质计算作答.(2)确定函数的相位范围,再借助正弦函数的性质计算作答.【小问1详解】依题意,,则,由解得:,所以,函数的最小正周期为,对称轴方程为.【小问2详解】由(1)知,因,则,而正弦函数在上单调递减,在上单调递增,由解得,由解得,因此,在上单调递减,在上单调递增,,而,即,所以函数单调递减区间是,值域为.20、(1);(2).【解题分析】(1)把代入函数解析式,求解关于的一元二次不等式,进一步求解指数不等式得答案;(2)不等式恒成立,等价于恒成立,求出时的范围,可得,即可求出的取值范围【题目详解】解:(1)当时,即:,则不等式的解集为(2)∵由条件:∴∴恒成立∵即的取值范围是【题目点拨】解不等式的常见类型:(1)一一二次不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林木农林结合育种策略分析考核试卷
- 2021年银行从业资格(中级)《公司信贷》考试历年真题(含答案)
- 2022-2023年二级建造师之二建公路工程实务题库检测试卷A卷附答案
- 重庆三峡学院《三峡地域文化设计查》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《微机原理与接口技术实验》2022-2023学年期末试卷
- 2024北京广渠门中学高二(上)期中地理(教师版)
- 安全用电技术档案规定技术交底
- 重庆人文科技学院《中学思想政治教育课堂教学技能训练》2023-2024学年第一学期期末试卷
- 重庆财经学院《外贸函电》2022-2023学年期末试卷
- 茶叶加工厂研究报告
- TGDMDMA 0024-2023 个性化基台制作规程
- DB65-T 4572-2022 建材企业安全生产等级评定技术规范
- 李约瑟难题解读
- 会计专业的职业生涯规划
- 工商企业管理毕业论文
- 二次根式的乘法计算题100道简单
- 【课件】归纳提炼的象征符号-标志设计 课件-高中美术人美版(2019)选择性必修4
- 架桥机安装验收表
- GB 18580-2001室内装饰装修材料人造板及其制品中甲醛释放限量
- 体育旅游课件
- 拼音复习-拼音转盘课件
评论
0/150
提交评论