




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省开封高中2024届高一上数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量“,不共线”是“|+|<||+||”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知直线ax+by+c=0的图象如图,则()A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>03.已知函数,则,()A.4 B.3C. D.4.为了给地球减负,提高资源利用率,垃圾分类在全国渐成风尚,假设2021年两市全年用于垃圾分类的资金均为万元.在此基础上,市每年投入的资金比上一年增长20%,市每年投入的资金比上一年增长50%,则市用于垃圾分类的资金开始超过市的两倍的年份是()(参考数据:)A.2022年 B.2024届C.2024届 D.2025年5.函数(且)的图象一定经过的点是()A. B.C. D.6.已知,,则下列不等式中恒成立的是()A. B.C. D.7.函数y=1+x+的部分图象大致为()A. B.C. D.8.已知函数,若,,,则,,的大小关系为A. B.C. D.9.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则10.如图,在平面直角坐标系中,角的始边为轴的非负半轴,终边与单位圆的交点为,将绕坐标原点逆时针旋转至,过点作轴的垂线,垂足为.记线段的长为,则函数的图象大致是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,若函数在上单调递增,则的取值范围是A. B. C. D.12.已知点,点P是圆上任意一点,则面积的最大值是______.13.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________14.函数的部分图象如图所示,则函数的解析式为________.15.函数的定义域是________16.已知幂函数的图象过点,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号电动汽车,在一段平坦的国道进行测试,国道限速(不含).经多次测试得到,该汽车每小时耗电量(单位:)与速度(单位:)的下列数据:01040600132544007200为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,,.(1)当时,请选出你认为最符合表格所列数据实际的函数模型,并求出相应的函数解析式;(2)现有一辆同型号汽车从地驶到地,前一段是的国道,后一段是的高速路,若已知高速路上该汽车每小时耗电量(单位:)与速度的关系是:,则如何行驶才能使得总耗电量最少,最少为多少?18.已知函数(1)求函数的最小正周期和在上的值域;(2)若,求的值19.如图所示,一块形状为四棱柱的木料,分别为的中点.(1)要经过和将木料锯开,在木料上底面内应怎样画线?请说明理由;(2)若底面是边长为2菱形,,平面,且,求几何体的体积.20.求解下列问题:(1)角的终边经过点,且,求的值(2)已知,,求的值21.化简求值:(1)已知,求的值;(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用向量的线性运算的几何表示及充分条件,必要条件的概念即得.【题目详解】当向量“,不共线”时,由向量三角形的性质可得“|+|<||+||”成立,即充分性成立,当“,方向相反”时,满足“|+|<||+||”,但此时两个向量共线,即必要性不成立,故向量“,不共线”是“|+|<||+||”的充分不必要条件.故选:A.2、D【解题分析】由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0;故选D.3、D【解题分析】根据分段函数解析式代入计算可得;【题目详解】解:因为,,所以,所以故选:D4、D【解题分析】设经过年后,市投入资金为万元,市投入资金为万元,即可表示出、,由题意可得,利用对数的运算性质解出的取值范围即可【题目详解】解:设经过年后,市投入资金为万元,则,市投入资金为万元,则由题意可得,即,即,即,即所以,所以,即2025年该市用于垃圾分类的资金开始超过市的两倍;故选:D5、D【解题分析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【题目详解】由函数解析式,知:当时,,即函数必过,故选:D.【题目点拨】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.6、D【解题分析】直接利用特殊值检验及其不等式的性质判断即可.【题目详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.7、D【解题分析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【题目详解】当x=1时,y=1+1+sin1=2+sin1>2,排除A、C;当x→+∞时,y→+∞,排除B.故选:D.【题目点拨】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.8、C【解题分析】根据函数解析式先判断函数的单调性和奇偶性,然后根据指数和对数的运算法则进行化简即可【题目详解】∵f(x)=x3,∴函数f(x)是奇函数,且函数为增函数,a=﹣f(log3)=﹣f(﹣log310)=f(log310),则2<log39.1<log310,20.9<2,即20.9<log39.1<log310,则f(209)<f(log39.1)<f(log310),即c<b<a,故选C【题目点拨】本题主要考查函数值的大小的比较,根据函数解析式判断函数的单调性和奇偶性是解决本题的关键9、C【解题分析】当时,不正确;当时,不正确;正确;当时,不正确.【题目详解】对于,当时,不成立,不正确;对于,当时,不成立,不正确;对于,若,则,正确;对于,当时,不成立,不正确.故选:C.【题目点拨】关键点点睛:利用不等式的性质求解是解题关键.10、B【解题分析】,所以选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.二、填空题:本大题共6小题,每小题5分,共30分。11、D【解题分析】由于函数为奇函数,且在上单调递增,结合函数的图象可知该函数的半周期大于或等于,所以,所以选择D考点:三角函数的图象与性质12、【解题分析】由点可得直线AB的方程及的值,可得圆心到直线AB的距离d及P到直线AB的最大距离,可得面积的最大值是.【题目详解】解:直线AB的方程为,圆心到直线AB的距离,点P到直线AB的最大距离为.故面积的最大值是.【题目点拨】本题主要考查直线与圆的位置关系,点到直线的距离公式及两点间距离公式等,需综合运用所学知识求解.13、①.②.【解题分析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;14、【解题分析】根据三角函数的图象,求出函数的周期,进而求出和即可得到结论【题目详解】由图象得,,则周期,则,则,当时,,则,即即,即,,,当时,,则函数的解析式为,故答案为【题目点拨】本题主要考查三角函数解析式的求解,根据三角函数图象求出,和的值是解决本题的关键15、##【解题分析】利用对数的真数大于零可求得原函数的定义域.【题目详解】对于函数,,解得,故函数的定义域为.故答案为:.16、3【解题分析】先求得幂函数的解析式,再去求函数值即可.【题目详解】设幂函数,则,则,则,则故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择,;(2)当这辆车在国道上的行驶速度为,在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【解题分析】(1)根据当时,无意义,以及是个减函数,可判断选择,然后利用待定系数法列方程求解即可;(2)利用二次函数的性质可判断在国道上的行驶速度为耗电最少,利用对勾函数的性质可判断在高速路上的行驶速度为时耗电最少,从而可得答案.【题目详解】(1)对于,当时,它无意义,所以不合题意;对于,它显然是个减函数,这与矛盾;故选择.根据提供的数据,有,解得,当时,.(2)国道路段长为,所用时间为,所耗电量,因为,当时,;高速路段长为,所用时间为,所耗电量为,由对勾函数的性质可知,在上单调递增,所以;故当这辆车在国道上的行驶速度为,在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【题目点拨】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18、(1)见解析;(2)【解题分析】(1)由三角函数中的恒等变换应用化简函数解析式为f(x)=,进而得到函数的周期与值域;(2)由(1)知,利用二倍角余弦公式可得所求.【题目详解】(1)由已知,,,∴又,则所以的最小正周期为在时的值域为.(2)由(1)知,所以则【题目点拨】本题考查三角函数的图像与性质,考查三角函数的化简求值,考查恒等变形能力,属于中档题.19、(1)见解析(2)3【解题分析】(1)根据面面平行的性质,两个平行平面,被第三个平面所截,截得的交线互相平行,故得到就是应画的线;(2)几何体是由三棱锥和四棱锥组成,分割成两个棱锥求体积即可解析:(1)连接,则就是应画的线;事实上,连接,在四棱柱中,因为分别为的中点,所以,,所以平行四边形,所以,又在四棱柱中,所以,所以点共面,又面,所以就是应画线.(2)几何体是由三棱锥和四棱锥组成.因为底面是边长为的菱形,,平面,连接,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60245-3:1994 FR-D Rubber insulated cables - Rated voltages up to and including 450/750 V - Part 3: Heat resistant silicone insulated cables
- 我的成长轨迹写人作文(5篇)
- 胰腺疾病考试试题及答案
- 六一助教活动方案
- 六一实践活动方案
- 六一水果活动方案
- 六一活动做游戏活动方案
- 六一活动双减活动方案
- 六一活动拉拉队活动方案
- 六一活动蛋糕房活动方案
- 生态系统对全球变化的响应
- 2023版中国近现代史纲要课件:09第九专题 新民主主义革命伟大胜利
- 小区燃气壁挂炉采购及安装合同
- 危货运输危险源识别清单
- 国际结算(中文)
- GB/T 3098.1-2010紧固件机械性能螺栓、螺钉和螺柱
- GB/T 16631-2008高效液相色谱法通则
- 性能验证医学宣教课件
- 中国现代文学三十年(第二编-第二个十年1928-1937-年-6-月)
- 配电室上墙的十项制度(一)
- 通用量具讲义课件
评论
0/150
提交评论