版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省平度市九中2024届高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若定义在上的奇函数在单调递减,且,则的解集是()A. B.C. D.2.已知直线,圆.点为直线上的动点,过点作圆的切线,切点分别为.当四边形面积最小时,直线方程是()A. B.C. D.3.,,,则()A. B.C. D.4.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.5.若函数是函数(且)的反函数,且,则()A. B.C. D.6.已知一元二次方程的两个不等实根都在区间内,则实数的取值范围是()A. B.C. D.7.下列函数中,最小正周期为的奇函数是()A. B.C. D.8.在中,,,若点满足,则()A. B.C. D.9.已知函数,若不等式对任意的均成立,则的取值不可能是()A. B.C. D.10.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.高三年级的一次模拟考试中,经统计某校重点班30名学生的数学成绩均在[100,150](单位:分)内,根据统计的数据制作出频率分布直方图如右图所示,则图中的实数a=__________,若以各组数据的中间数值代表这组数据的平均水平,估算该班的数学成绩平均值为__________12.已知函数,若存在,使得f()=g(),则实数a的取值范围为___13.已知,则的最小值为___________14.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.15.已知函数,若在区间上的最大值是,则_______;若在区间上单调递增,则的取值范围是___________16.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求的最小正周期;(2)求单调递减区间18.已知函数f(x)=(m∈Z)为偶函数,且在(0,+∞)上为增函数(1)求m的值,并确定f(x)的解析式;(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由19.已知函数的图像过点,且图象上与点最近的一个最低点是.(1)求的解析式;(2)求函数在区间上的取值范围.20.某商品上市天内每件的销售价格(元)与时间(天)函数的关系是,该商品的日销售量(件)与时间(天)的函数关系是.(1)求该商品上市第天的日销售金额;(2)求这个商品的日销售金额的最大值.21.已知函数(,且).(1)求函数的定义域;(2)是否存在实数a,使函数在区间上单调递减,并且最大值为1?若存在,求出a的值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】分析函数的单调性,可得出,分、两种情况解不等式,综合可得出原不等式的解集.【题目详解】因为定义在上的奇函数在单调递减,则函数在上为减函数.且,当时,由可得,则;当时,由可得,则.综上所述,不等式的解集为.故选:C.2、B【解题分析】求得点C到直线l的距离d,根据,等号成立时,求得点P,进而求得过的圆的方程,与已知圆的方程联立求解.【题目详解】设点C到直线l的距离为,由,此时,,方程为,即,与直线联立得,因为共圆,其圆心为,半径为,圆的方程为,与联立,化简整理得,答案:B3、B【解题分析】根据对数函数和指数函数的单调性即可得出,,的大小关系【题目详解】,,,故选:4、D【解题分析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【题目详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D5、B【解题分析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【题目详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.6、D【解题分析】设,根据二次函数零点分布可得出关于实数的不等式组,由此可解得实数的取值范围.【题目详解】设,则二次函数的两个零点都在区间内,由题意,解得.因此,实数的取值范围是.故选:D.7、C【解题分析】根据题意,分别判断四个选项中的函数的最小正周期和奇偶性即可,其中A、C选项中的函数先要用诱导公式化简.【题目详解】A选项:,其定义域为,,为偶函数,其最小正周期为,故A错误.B选项:,其最小正周期为,函数定义域为,,函数不是奇函数,故B错误.C选项:其定义域为,,函数为奇函数,其最小正周期为,故C正确.D选项:函数定义域为,,函数为偶函数,其最小正周期,故D错误.故选:C.8、C【解题分析】由题可得,进一步化简可得.【题目详解】,,.故选:C.9、D【解题分析】根据奇偶性定义和单调性的性质可得到的奇偶性和单调性,由此将恒成立的不等式化为,通过求解的最大值,可知,由此得到结果.【题目详解】,是定义在上的奇函数,又,为增函数,为减函数,为增函数.由得:,,整理得:,,,,的取值不可能是.故选:D.【题目点拨】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.10、D【解题分析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.【题目详解】根据图象:,,故,,故,,即,,,当时,满足条件,则,故只需将的图象向左平移个单位即可.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、①.0.005(或)②.126.5(或126.5分)【解题分析】根据频率分布直方图的性质得到参数值,进而求得平均值.详解】由频率分布直方图可得:,∴;该班的数学成绩平均值为.故答案为:12、【解题分析】先求出的值域,再求出的值域,利用和得到不等式组求解即可.【题目详解】因为,所以,故,即因为,依题意得,解得故答案为:.13、【解题分析】根据基本不等式,结合代数式的恒等变形进行求解即可.【题目详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.14、【解题分析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【题目详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【题目点拨】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角15、①.②.【解题分析】根据定义域得,再得到取最大值的条件求解即可;先得到一般性的单调增区间,再根据集合之间的关系求解.【题目详解】因为,且在此区间上的最大值是,所以因为f(x)max=2tan=,所以tan==,即ω=由,得令,得,即在区间上单调递增又因在区间上单调递增,所以<,即所以的取值范围是故答案为:1,16、【解题分析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【题目详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)利用求出函数的最小正周;(2)由求出x的范围,即得的单调递减区间.【小问1详解】∵函数,∴,故的最小正周期为.【小问2详解】由可得,,解之得,所以f(x)的单调递减区间.18、(1)或,(2)存在实数,使在区间上的最大值为2【解题分析】(1)由条件幂函数,在上为增函数,得到解得2分又因为所以或3分又因为是偶函数当时,不满足为奇函数;当时,满足为偶函数;所以5分(2)令,由得:在上有定义,且在上为增函数.7分当时,因为所以8分当时,此种情况不存在,9分综上,存在实数,使在区间上的最大值为210分考点:函数的基本性质运用点评:解决该试题的关键是能理解函数的奇偶性和单调性的运用,能理解复合函数的性质得到最值,属于基础题19、(1);(2).【解题分析】(1)根据,两点可求出和周期,再由周期公式即可求出,再由即可求出;(2)根据求出函数的值域,再利用换元法令即可求出函数的取值范围.【题目详解】(1)根据题意可知,,,所以,解得,所以,又,所以,又,所以,所以(2)因为,所以,所以,所以,令,即,则,当时,取得最小值,当时,取得最大值7,故的取值范围是.【题目点拨】方法点睛:由图象确定系数,通常采用两种方法:①如果图象明确指出了周期的大小和初始值(第一个零点的横坐标)或第二,第三(或第四,第五)点横坐标,可以直接解出和,或由方程(组)求出;②代入点的坐标,通过解最简单的三角函数方程,再结合图象确定和.20、(1)750元;(2)元.【解题分析】(1)根据题目提供的函数关系式分别算出该商品上市第20天的销售价格和日销售量即可;(2)设日销售金额为元,则,分别讨论当时以及当时的情况即可【题目详解】解:(1)该商品上市第天的销售价格是元,日销售量为件.所以该商品上市第天的日销售金额是元.(2)设日销售金额为(元),则.当,时,取得最大值为(元),当,时,取得最大值为(元).所以第天时,这个商品的日销售金额最大,最大值为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论