山东省夏津一中2024届高一数学第一学期期末质量检测试题含解析_第1页
山东省夏津一中2024届高一数学第一学期期末质量检测试题含解析_第2页
山东省夏津一中2024届高一数学第一学期期末质量检测试题含解析_第3页
山东省夏津一中2024届高一数学第一学期期末质量检测试题含解析_第4页
山东省夏津一中2024届高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省夏津一中2024届高一数学第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设p:关于x的方程有解;q:函数在区间上恒为正值,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知函数,若关于的方程有四个不同的实数解,且,则的取值范围是()A. B.C. D.3.若将函数的图象向左平移个单位长度,则平移后图象的对称轴为()A. B.C. D.4.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限5.设,则A.f(x)与g(x)都是奇函数 B.f(x)是奇函数,g(x)是偶函数C.f(x)与g(x)都是偶函数 D.f(x)是偶函数,g(x)是奇函数6.下列函数中,是偶函数且值域为的是()A. B.C. D.7.已知函数,.若在区间内没有零点,则的取值范围是A. B.C. D.8.函数的图象大致是A. B.C. D.9.在中,若,则的形状为()A.等边三角形 B.直角三角形C.钝角三角形 D.不含角的等腰三角形10.已知平面向量,,且,则实数的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:______.12.已知点,,在函数的图象上,如图,若,则______.13.函数在上的最小值为__________.14.若函数在区间上单调递增,则实数的取值范围是__________.15.函数的反函数为___________.16.已知一等腰三角形的周长为12,则将该三角形的底边长y(单位:)表示为腰长x(单位:)的函数解析式为___________.(请注明函数的定义域)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为,满足.(1)求角的大小;(2)若,且,求的面积18.如图,在四棱锥P-ABCD中,AB∥CD,△PAD是等边三角形,平面PAD⊥平面ABCD,已知AD=2,,AB=2CD=4(1)求证:平面PBD⊥平面PAD;(2)若M为PC的中点,求四棱锥M-ABCD的体积19.已知函数,.(1)若关于的不等式的解集为,当时,求的最小值;(2)若对任意的、,不等式恒成立,求实数的取值范围20.已知角的顶点在原点,始边与x轴的非负半轴重合,终边经过点(1)求的值;(2)求的值21.已知函数,,.若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论(3)已知且,若.试证:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】先化简p,q,再利用充分条件和必要条件的定义判断.【题目详解】因为方程有解,即方程有解,令,则,即;因为函数在区间上恒为正值,所以在区间上恒成立,即在区间上恒成立,解得,所以p是q的必要不充分条件,故选:B2、D【解题分析】画出函数的图象,根据对称性和对数函数的图象和性质即可求出【题目详解】可画函数图象如下所示若关于的方程有四个不同的实数解,且,当时解得或,关于直线对称,则,令函数,则函数在上单调递增,故当时故当时所以即故选:【题目点拨】本题考查函数方程思想,对数函数的性质,数形结合是解答本题的关键,属于难题.3、C【解题分析】由题意得,将函数的图象向左平移个单位长度,得到,由,得,即平移后的函数的对称轴方程为,故选C4、B【解题分析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B5、B【解题分析】定义域为,定义域为R,均关于原点对称因为,所以f(x)是奇函数,因为,所以g(x)是偶函数,选B.6、D【解题分析】分别判断每个选项函数的奇偶性和值域即可.【题目详解】对A,,即值域为,故A错误;对B,的定义域为,定义域不关于原点对称,不是偶函数,故B错误;对C,的定义域为,定义域不关于原点对称,不是偶函数,故C错误;对D,的定义域为,,故是偶函数,且,即值域为,故D正确.故选:D.7、D【解题分析】先把化成,求出的零点的一般形式为,根据在区间内没有零点可得关于的不等式组,结合为整数可得其相应的取值,从而得到所求的取值范围.【题目详解】由题设有,令,则有即因为在区间内没有零点,故存在整数,使得,即,因为,所以且,故或,所以或,故选:D.【题目点拨】本题考查三角函数在给定范围上的零点的存在性问题,此类问题可转化为不等式组的整数解问题,本题属于难题.8、A【解题分析】因为2、4是函数的零点,所以排除B、C;因为时,所以排除D,故选A9、B【解题分析】利用三角形的内角和,结合差角的余弦公式,和角的正弦公式,即可得出结论【题目详解】解:由题意可得sin(A﹣B)=1+2cos(B+C)sin(A+C),∴sin(A﹣B)=1﹣2cosAsinB,∴sinAcosB﹣cosAsinB=1﹣2cosAsinB,∴sinAcosB+cosAsinB=1,∴sin(A+B)=1,∴A+B=90°,∴△ABC是直角三角形故选:B【题目点拨】本题考查差角的余弦公式,和角的正弦公式,考查学生的计算能力,属于基础题10、C【解题分析】根据垂直向量坐标所满足的条件计算即可【题目详解】因为平面向量,,且,所以,解得故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用指数幂和对数的运算性质可计算出所求代数式的值.【题目详解】原式.故答案为:.【题目点拨】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.12、【解题分析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【题目详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【题目点拨】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.13、【解题分析】正切函数在给定定义域内单调递增,则函数的最小值为.14、【解题分析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【题目详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:15、【解题分析】由题设可得,即可得反函数.【题目详解】由,可得,∴反函数为.故答案为:.16、【解题分析】根据题意得,再结合两边之和大于第三边,底边长大于得,进而得答案.【题目详解】解:根据题意得,由三角形两边之和大于第三边得,所以,即,又因为,解得所以该三角形的底边长y(单位:)表示为腰长x(单位:)的函数解析式为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用正弦定理可以得到,即可求出角的大小;(2)利用余弦定理并结合(1)中的结论,可以求出,代入三角形面积公式即可【题目详解】(1)由于,结合正弦定理可得,由于,可得,即,因为,故.(2)由,,且,代入余弦定理,即,解得,则的面积.【题目点拨】本题考查了正弦定理和余弦定理的应用,属于中档题18、(1)证明过程详见解析(2)【解题分析】(1)先证明BD⊥平面PAD,即证平面PBD⊥平面PAD.(2)取AD中点为O,则PO是四棱锥的高,再利用公式法求四棱锥M-ABCD的体积【题目详解】(1)在三角形ABD中由勾股定理得AD⊥BD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BD⊥平面PAD,则平面PBD⊥平面PAD.(2)取AD中点为O,则PO是四棱锥的高,,底面ABCD的面积是三角形ABD面积的,即,所以四棱锥P-ABCD的体积为.【题目点拨】本题主要考查空间直线平面位置关系的证明,考查空间几何体体积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理转化能力.19、(1)(2)【解题分析】(1)根据二次不等式的解集得,再根据基本不等式求解即可;(2)根据题意将问题转化为在恒成立,再令,(),分类讨论即可求解.【题目详解】(1)由关于的不等式的解集为,所以知∴又∵,∴,取“”时∴即的最小值为,取“”时(2)∵时,,∴根据题意得:在恒成立记,()①当时,由,∴②当时,由,∴③当时,由,综上所述,的取值范围是【题目点拨】本题的第二问中关键是采用动轴定区间的方法进行求解,即讨论对称轴在定区间的左右两侧以及对称轴在定区间上的变化情况,从而确定该函数的最值.20、(1)(2)2【解题分析】(1)根据题意可得,结合三角函数诱导公式即可求解.(2)利用正切函数的诱导公式,及正切函数两角差公式即可求解.【小问1详解】解析:(1)由已知可得【小问2详解】(2)21、(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【解题分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大【小问1详解】,即,因不等式解集为,所以,解得:,所以【小问2详解】函数在区间上的单调递增,证明如下:假设,则,因为,所以,所以,即当时,,所以函数在区间上的单调递增【小问3详解】由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论