版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省平顶山市汝州市实验中学高一上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“”的否定为A. B.C. D.2.A. B.C.2 D.43.半径为2,圆心角为的扇形的面积为()A. B.C. D.24.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A.①③ B.③④C.①④ D.②③5.为了得到函数的图象,只需要把函数的图象上所有的点①向左平移个单位,再把所有各点的横坐标缩短到原来的倍;②向左平移个单位,再把所有各点的横坐标缩短到原来的倍;③各点的横坐标缩短到原来的倍,再向左平移个单位:④各点的横坐标缩短到原来的倍,再向左平移个单位其中命题正确的为()A.①③ B.①④C.②③ D.②④6.已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数7.命题“”的否定是:()A. B.C. D.8.已知集合,则()A.0或1 B.C. D.或9.已知幂函数的图象过(4,2)点,则A. B.C. D.10.下列函数中定义域为,且在上单调递增的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数有两个零点,则___________12.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)13.已知函数.则函数的最大值和最小值之积为______14.______________15.已知函数对于任意,都有成立,则___________16.如图,某化学实验室的一个模型是一个正八面体(由两个相同的正四棱锥组成,且各棱长都相等)若该正八面体的表面积为,则该正八面体外接球的体积为___________;若在该正八面体内放一个球,则该球半径的最大值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求的值;(2)求的值;(3)求的值.18.设全集为,,,求:(1)(2)(3)19.已知实数,定义域为的函数是偶函数,其中为自然对数的底数(Ⅰ)求实数值;(Ⅱ)判断该函数在上的单调性并用定义证明;(Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由20.某保险公司决定每月给推销员确定具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图:(1)①根据图中数据,求出月销售额在小组内的频率;②根据直方图估计,月销售目标定为多少万元时,能够使的推销员完成任务?并说明理由;(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.21.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据命题的否定的定义写出结论,注意存在量词与全称量词的互换【题目详解】命题“”的否定为“”故选D【题目点拨】本题考查命题的否定,解题时一定注意存在量词与全称量词的互换2、D【解题分析】因,选D3、D【解题分析】利用扇形的面积公式即得.【题目详解】由题可得.故选:D4、A【解题分析】分析:如图所示,连接AC、BD相交于点O,连接EM,EN(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP;(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直详解:如图所示,连接AC、BD相交于点O,连接EM,EN对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确故选A点睛:本题考查了空间线面、面面的位置关系判定,属于中档题.对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断.还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.5、B【解题分析】利用三角函数图象变换可得出结论.【题目详解】因为,所以,为了得到函数的图象,只需要把函数的图象上所有的点向左平移个单位,再把所有各点的横坐标缩短到原来的倍,或将函数的图象上各点的横坐标缩短到原来的倍,再向左平移个单位.故①④满足条件,故选:B.6、A【解题分析】分析:讨论函数的性质,可得答案.详解:函数的定义域为,且即函数是奇函数,又在都是单调递增函数,故函数在R上是增函数故选A.点睛:本题考查函数的奇偶性单调性,属基础题.7、A【解题分析】由特称命题的否定是全称命题,可得出答案.【题目详解】根据特称命题的否定是全称命题,可知命题“”的否定是“”.故选:A.8、D【解题分析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【题目详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.9、A【解题分析】详解】由题意可设,又函数图象过定点(4,2),,,从而可知,则.故选A10、D【解题分析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.【题目详解】因为的定义域为,的定义域为,所以排除选项B,C.因为在是减函数,所以排除选项A,故选D.【题目点拨】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】根据函数零点的定义可得,进而有,整理计算即可得出结果.【题目详解】因为函数又两个零点,所以,即,得,即,所以.故答案为:212、【解题分析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【题目详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.13、80【解题分析】根据二次函数的性质直接计算可得.【题目详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:8014、【解题分析】利用指数的运算法则和对数的运算法则即求.【题目详解】原式.故答案为:.15、##【解题分析】由可得时,函数取最小值,由此可求.【题目详解】,其中,.因为,所以,,解得,,则故答案为:.16、①.②.【解题分析】由已知求得正八面体的棱长为,进而求得,即知外接球的半径,进而求得体积;若球O在正八面体内,则球O半径的最大值为O到平面的距离,证得平面,再利用相似可知,即可求得半径.【题目详解】如图,记该八面体为,O为正方形的中心,则平面设,则,解得.在正方形中,,则在直角中,知,即正八面体外接球的半径为故该正八面体外接球的体积为.若球O在正八面体内,则球O半径的最大值为O到平面的距离.取的中点E,连接,,则,又,,平面过O作于H,又,,所以平面,又,,则,则该球半径的最大值为.故答案为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)4;(3).【解题分析】(1)根据同角函数关系得到正弦值,结合余弦值得到正切值;(2)根据诱导公式化简,上下同除余弦值即可;(3)结合两角和的正弦公式和二倍角公式可得到结果.【题目详解】(1)∵,,∴∴(2).(3)=,根据二倍角公式得到;代入上式得到=.【题目点拨】这个题目考查了三角函数的同角三角函数的诱导公式和弦化切的应用,以及二倍角公式的应用,利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.18、(1);(2);(3).【解题分析】(1)根据集合的交集的概念得到结果;(2)根据集合的补集的概念得到结果;(3)先求AB的并集,再根据补集的概念得到结果.解析:(1)(2)(3)19、(Ⅰ)1;(Ⅱ)在上递增,证明详见解析;(Ⅲ)不存在.【解题分析】(Ⅰ)根据函数是偶函数,得到恒成立,即恒成立,进而得到,即可求出结果;(Ⅱ)任取,且,根据题意,作差得到,进而可得出函数单调性;(Ⅲ)由(Ⅱ)知函数在上递增,由函数是偶函数,所以函数在上递减,再由题意,不等式恒成立可化为恒成立,即对任意的恒成立,根据判别式小于0,即可得出结果.【题目详解】(Ⅰ)因为定义域为的函数是偶函数,则恒成立,即,故恒成立,因为不可能恒为,所以当时,恒成立,而,所以(Ⅱ)该函数在上递增,证明如下设任意,且,则,因为,所以,且;所以,即,即;故函数在上递增(Ⅲ)由(Ⅱ)知函数在上递增,而函数是偶函数,则函数在上递减.若存在实数,使得对任意的,不等式恒成立.则恒成立,即,即对任意的恒成立,则,得到,故,所以不存在【题目点拨】本主要考查由函数奇偶性求参数,用单调性的定义判断函数单调性,以及由不等式恒成立求参数的问题,熟记函数单调性与奇偶性的定义即可,属于常考题型.20、(1)①;②17,理由见解析(2)【解题分析】(1)①利用各组的频率和为1求解,②由题意可得的推销员不能完成该目标,而前两组的频率和,前三组的频率和为,所以月销售目标应在第3组,从而可求得结果,(2)由频率分布直方图结合题意可得待选的推销员一共有4人,然后利用列举法求解概率【小问1详解】①月销售额在小组内的频率为.②若要使的推销员能完成月销售额目标,则意味着的推销员不能完成该目标.根据题图所示的频率分布直方图知,和两组的频率之和为0.18,故估计月销售额目标应定为(万元).【小问2详解】根据直方图可知,月销售额为和的频率之和为0.08,由可知待选的推销员一共有4人.设这4人分别为,则样本空间为{},一共有6种情况其中2人来自同一组的情况有2种所以选出的推销员来自同一个小组的概率.21、(1)或,;(2)R上单调递增,证明见解析;(3)【解题分析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家电合同采购合同模板
- 关于销售返利合同范例
- 工程资料租赁合同范例
- 建设工程商务合同范例
- 几人打火购车合同范例
- 三轮车二手车买卖合同范例
- 小型厂房临街出售合同模板
- 店铺学徒用人合同范例
- 加拿大与美国贸易合同模板
- 德国厨师劳务合同范例
- 消防工程技术标书(暗标)
- 新北师大版七年级下册英语(全册知识点语法考点梳理、重点题型分类巩固练习)(家教、补习、复习用)
- 福建师范大学《计算机应用基础》3答卷答案
- 定向越野教程-中国定向运动协会PPT课件[通用]
- 高聚物的相及相转变中的亚稳态现象
- 《幼儿园中班第一学期家长会》 PPT课件
- 无人机活动方案计划
- 宿舍管理制度及台账
- 造型别致的椅子美术
- 多吃健脑食物,预防老年痴呆症
- 清洗效果监测方法--ppt课件
评论
0/150
提交评论