版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省化州市数学高一上期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.
4,6
B.C
D.2.定义在上的奇函数,在上单调递增,且,则满足的的取值范围是()A. B.C. D.3.如图,在正四棱柱中,,点是平面内的一个动点,则三棱锥的正视图和俯视图的面积之比的最大值为A B.C. D.4.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行5.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台6.若两直线与平行,则它们之间的距离为A. B.C. D.7.已知定义在上的奇函数满足,且当时,,则()A. B.C. D.8.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C D.9.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.10.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为二、填空题:本大题共6小题,每小题5分,共30分。11.不等式tanx+12.下列说法正确的序号是__________________.(写出所有正确的序号)①正切函数在定义域内是增函数;②已知函数的最小正周期为,将的图象向右平移个单位长度,所得图象关于轴对称,则的一个值可以是;③若,则三点共线;④函数的最小值为;⑤函数在上是增函数,则的取值范围是.13.调查某高中1000名学生的肥胖情况,得到的数据如表:偏瘦正常肥胖女生人数88175y男生人数126211z若,则肥胖学生中男生不少于女生的概率为_________14.已知,且,则=_______________.15.设向量,,则__________16.设,则a,b,c的大小关系为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且,(1)求,的值;(2),求的值18.(1)已知是奇函数,求的值;(2)画出函数图象,并利用图象回答:为何值时,方程无解?有一解?有两解.19.函数的部分图像如图所示(1)求的解析式;(2)已知函数求的值域20.我国所需的高端芯片很大程度依赖于国外进口,“缺芯之痛”关乎产业安全、国家经济安全.如今,我国科技企业正在芯片自主研发之路中不断崛起.根据市场调查某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机万部并全部销售完,每万部的销售收入为万美元,且当该公司一年内共生产该款手机2万部并全部销售完时,年利润为704万美元.(1)写出年利润(万美元)关于年产量(万部)的函数解析式:(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.21.阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数和,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数的图象是向下凸的,在上任意取两个点,函数的图象总是在线段的下方,此时函数称为下凸函数;函数的图象是向上凸的,在上任意取两个点,函数的图象总是在线段的上方,则函数称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点之间的部分位于线段的下方.定义2:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点之间的部分位于线段的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数在为上凸函数,在上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数是上凸函数;(3)已知函数,若对任意,恒有,尝试数形结合探究实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】利用交、并、补集运算,对答案项逐一验证即可【题目详解】,A错误={2,3,4,5,6,7}=,B正确
{3,4,5,7},C错误,,D错误故选:B【题目点拨】本题考查集合的混合运算,较简单2、B【解题分析】由题意可得,,在递增,分别讨论,,,,,结合的单调性,可得的范围【题目详解】函数是定义在上的奇函数,在区间上单调递增,且(1),可得,,在递增,若时,成立;若,则成立;若,即,可得(1),即有,可得;若,则,,可得,解得;若,则,,可得,解得综上可得,的取值范围是,,故选:B3、B【解题分析】由题意可知,P在正视图中的射影是在C1D1上,AB在正视图中,在平面CDD1C1上的射影是CD,P的射影到CD的距离是AA1=2,所以三棱锥P﹣ABC的正视图的面积为三棱锥P﹣ABC的俯视图的面积的最小值为,所以三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为,故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.4、C【解题分析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.5、C【解题分析】利用空间几何体的结构特征可得.【题目详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.6、D【解题分析】根据两直线平行求得值,利用平行线间距离公式求解即可【题目详解】与平行,,即直线为,即故选D【题目点拨】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,7、C【解题分析】先推导出函数的周期为,可得出,然后利用函数的奇偶性结合函数的解析式可计算出结果.【题目详解】函数是上的奇函数,且,,,所以,函数的周期为,则.故选:C.【题目点拨】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题.8、D【解题分析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【题目详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【题目点拨】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x的不等式,属于基础题9、C【解题分析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【题目详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【题目点拨】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题10、D【解题分析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【题目详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【题目点拨】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、kπ,π4【解题分析】根据正切函数性质求解、【题目详解】由正切函数性质,由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案为:[kπ,kπ+π412、③⑤【解题分析】对每一个命题逐一判断得解.【题目详解】①正切函数在内是增函数,所以该命题是错误的;②因为函数的最小正周期为,所以w=2,所以将的图象向右平移个单位长度得到,所得图象关于轴对称,所以,所以的一个值不可以是,所以该命题是错误的;③若,因为,所以三点共线,所以该命题是正确的;④函数=,所以sinx=-1时,y最小为-1,所以该命题是错误的;⑤函数在上是增函数,则,所以的取值范围是.所以该命题是正确的.故答案为③⑤【题目点拨】本题主要考查正切函数的单调性,考查正弦型函数的图像和性质,考查含sinx的二次型函数的最值的计算,考查对数型函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.13、【解题分析】先求得,然后利用列举法求得正确答案.【题目详解】依题意,依题意,记,则所有可能取值为,,,共种,其中肥胖学生中男生不少于女生的为,,,共种,故所求的概率为.故答案为:14、【解题分析】由同角三角函数关系求出,最后利用求解即可.【题目详解】由,且得则,则.故答案为:.15、【解题分析】,故,故填.16、【解题分析】根据指数函数和对数函数的单调性可得到,,,从而可比较a,b,c的大小关系.【题目详解】因为,,,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值;(2)可将转化为然后利用两角差的正弦公式即可得出结果【题目详解】⑴,因为,,所以;⑵因为,,,所以,【题目点拨】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围18、(1);(2)时,无解;时,有两个解;或时,有一个解.【解题分析】(1)由奇函数的定义,,代入即可得出结果.(2)画出函数图象,结合函数图象可得出结果.【题目详解】(1)为奇函数,,所以(2)函数图象如图,可知时,无解;时,有两个解;或时,有一个解【题目点拨】本题考查了奇函数的定义,考查了运算求解能力和画图能力,数形结合思想,属于基础题目.19、(1)(2)【解题分析】(1)根据图像和“五点法”即可求出三角函数的解析式;(2)根据三角恒等变换可得,结合x的取值范围和正弦函数的性质即可得出结果.小问1详解】由图像可知的最大值是1,所以,当时,,可得,又,所以当时,有最小值,所以,解得,所以;【小问2详解】,由可得所以,所以.20、(1);(2)32万部,最大值为6104万美元.【解题分析】(1)先由生产该款手机2万部并全部销售完时,年利润为704万美元,解得,然后由,将代入即可.(2)当时利用二次函数的性质求解;当时,利用基本不等式求解,综上对比得到结论.【题目详解】(1)因为生产该款手机2万部并全部销售完时,年利润为704万美元.所以,解得,当时,,当时,.所以(2)①当时,,所以;②当时,,由于,当且仅当,即时,取等号,所以此时的最大值为5760.综合①②知,当,取得最大值为6104万美元.【题目点拨】思路点睛:应用题的基本解题步骤:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,要注意变量的实际意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论