




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市常州高级中学分校2024届高一数学第一学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则()A. B.C. D.2.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为13.直线与圆相切,则的值为()A. B.C. D.4.函数部分图像如图所示,则的值为()A. B.C. D.5.角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.若某商店将进货单价为6元的商品按每件10元出售,则每天可销售100件.现准备采用提高售价、减少进货量的方法来增加利润.已知这种商品的售价每提高1元,销售量就要减少10件,那么要保证该商品每天的利润在450元以上,售价的取值范围是()A. B.C. D.7.已知函数,若存在R,使得不等式成立,则实数的取值范围为()A. B.C. D.8.化为弧度是()A. B.C. D.9.主视图为矩形的几何体是()A. B.C. D.10.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数若函数有三个不同的零点,且,则的取值范围是____12.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________13.已知函数(,)的部分图象如图所示,则的值为14.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________15.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______16.设,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围18.已知集合.(1)当时,求;(2)若,求实数的取值范围.19.已知函数满足,且.(1)求的解析式;(2)求在上的值域.20.已知关于的函数.(1)若函数是偶函数,求实数的值;(2)当时,对任意,记的最小值为,的最大值为,且,求实数的值.21.已知函数(且)的图像过点.(1)求a的值;(2)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】求出集合,,直接进行交集运算即可.【题目详解】,,故选:C【题目点拨】本题考查集合的交集运算,指数函数的值域,属于基础题.2、D【解题分析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【题目详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D3、D【解题分析】由圆心到直线的距离等于半径可得【题目详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D4、C【解题分析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【题目详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【题目点拨】本题考查了三角函数的图象与性质,属于中档题.5、A【解题分析】由于,所以由终边相同的定义可得结论【题目详解】因为,所以角的终边与角的终边相同,所以角的终边落在第一象限角故选:A6、B【解题分析】根据题意列出函数关系式,建立不等式求解即可.【题目详解】设售价为,利润为,则,由题意,即,解得,即售价应定为元到元之间,故选:B.7、D【解题分析】利用函数的奇偶性与单调性把函数不等式变形,然后由分离参数法转化为求函数的最值【题目详解】是奇函数,且在上是增函数,因此不等式可化为,所以,,由得的最小值是2,所以故选:D8、D【解题分析】根据角度制与弧度制的互化公式,正确运算,即可求解.【题目详解】根据角度制与弧度制的互化公式,可得.故选:D.9、A【解题分析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果.【题目详解】A选项,圆柱的主视图为矩形,故A正确;B选项,圆锥的主视图为等腰三角形,故B错;C选项,棱锥的主视图为三角形,故C错;D选项,球的主视图为圆,故D错.故选:A.【题目点拨】本题主要考查简单几何体的正视图,属于基础题型.10、B【解题分析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【题目详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.12、##0.5【解题分析】根据题意,用表示出与,求出λ、μ的值即可【题目详解】设,则=(1﹣k)+k=,∴故答案为:13、【解题分析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;14、3【解题分析】设铜球的半径为,则,得,故答案为.15、②③【解题分析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.16、【解题分析】根据自变量取值判断使用哪一段解析式求解,分别代入求解即可【题目详解】解:因为,所以,所以故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解题分析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得18、(1);(2).【解题分析】(1)m=﹣2时求出集合B,然后进行交集、并集的运算即可;(2)由B⊆A便可得到,解该不等式组即可得到实数m的取值范围试题解析:(1);(2)解:当时,,由中不等式变形得,解得,即.(1).(2),解得,的取值范围为.19、(1)(2)【解题分析】(1)利用换元法令,求得的表达式,代入即可求得参数,即可得的解析式;(2)根据函数单调性,即可求得在上的值域.【题目详解】(1)令,则,则.因为,所以,解得.故的解析式为.(2)由(1)知,在上为增函数.因为,,所以在上的值域为.【题目点拨】本题考查了换元法求二次函数的解析式,根据函数单调性求函数的值域,属于基础题.20、(1)(2)【解题分析】(1)利用偶函数定义求出实数的值;(2)函数在上单调递减,明确函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同签署次序与内容
- 学前班口腔教育主题班会
- 阿克苏工业职业技术学院《医学免疫学研究进展》2023-2024学年第二学期期末试卷
- 阿坝师范学院《西方史学史》2023-2024学年第一学期期末试卷
- 阿鲁科尔沁旗2024-2025学年小学六年级第二学期小升初数学试卷含解析
- 陕师大附中2025届中考化学试题原创模拟卷(十)含解析
- 陕西学前师范学院《临床流行病学与循证医学》2023-2024学年第一学期期末试卷
- 陕西工商职业学院《传感器及测试技术》2023-2024学年第二学期期末试卷
- SCI论文写作与投稿 第2版-课件 12-SCI论文表格使用
- 陕西机电职业技术学院《网页艺术设计与制作》2023-2024学年第一学期期末试卷
- 妞康特牛奶蛋白过敏诊治-课件
- 施工机具专项施工方案
- 苏教版三年级科学(下)第一单元综合测试卷植物的一生(一)含答案
- API-650-1钢制焊接石油储罐
- 少儿美术绘画教学课件 艺库美术 10岁-12岁 《创意素描-洗刷刷》
- 档案移交清单
- 2022年“华罗庚杯”全国初中数学预赛-竞赛试题及答案
- 减速机生产工艺流程图
- 金融科技课件(完整版)
- 网络直播行业税收检查指引
- 初中三年主题班会整体规划
评论
0/150
提交评论