广东省深圳高中联考联盟2024届高一上数学期末调研模拟试题含解析_第1页
广东省深圳高中联考联盟2024届高一上数学期末调研模拟试题含解析_第2页
广东省深圳高中联考联盟2024届高一上数学期末调研模拟试题含解析_第3页
广东省深圳高中联考联盟2024届高一上数学期末调研模拟试题含解析_第4页
广东省深圳高中联考联盟2024届高一上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳高中联考联盟2024届高一上数学期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在2.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是()A. B.C. D.3.已知数列是首项,公比的等比数列,且,,成等差数列,则公比等于()A. B.C. D.4.函数的一部分图像如图所示,则()A. B.C. D.5.已知函数,则A. B.0C.1 D.6.已知,则的大小关系为A. B.C. D.7.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A. B.-C.2 D.8.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是()A. B.C. D.9.若函数且在上既是奇函数又是增函数,则的图象是A. B.C. D.10.设函数,有四个实数根,,,,且,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.无论实数k取何值,直线kx-y+2+2k=0恒过定点__12.已知,则的最小值为_______________.13.已知函数的零点为,则,则______14.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______15.设,且,则的取值范围是________.16.函数的递增区间是__________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值(2)求的值.18.计算下列各式的值:(I);(Ⅱ)log327+lg25+1g4+log42.19.在中,,记,且为正实数),(1)求证:;(2)将与的数量积表示为关于的函数;(3)求函数的最小值及此时角的大小20.已知函数,(,且).(1)求的定义域,并判断函数的奇偶性;(2)对于,恒成立,求实数的取值范围.21.已知函数为上奇函数(1)求实数的值;(2)若不等式对任意恒成立,求实数的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.2、D【解题分析】根据三角形函数图像变换和解析式的关系即可求出变换后函数解析式,从而根据余弦函数图像的性质可求其对称轴.【题目详解】将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),则函数解析式变为;向左平移个单位得,由余弦函数的性质可知,其对称轴一定经过图象的最高点或最低点,故对称轴为:,k∈Z,k=1时,.故选:D.3、A【解题分析】由等差数列性质得,由此利用等比数列通项公式能求出公比【题目详解】数列是首项,公比的等比数列,且,,成等差数列,,,解得(舍或故选A【题目点拨】本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用4、D【解题分析】由图可知,,排除选项,由,排除选项,故选.5、C【解题分析】根据自变量所在的范围先求出,然后再求出【题目详解】由题意得,∴故选C【题目点拨】根据分段函数的解析式求函数值时,首先要分清自变量所属的范围,然后再代入解析式后可得结果,属于基础题6、D【解题分析】,且,,,故选D.7、A【解题分析】如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角【题目详解】解:如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角设,则,,,异面直线与所成角的余弦值为,故选:A【题目点拨】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角8、D【解题分析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围【题目详解】∵对任意实数,都有成立,∴函数在R上为增函数,∴,解得,∴实数的取值范围是故选:D9、D【解题分析】根据题意先得到,,判断其单调性,进而可求出结果.【题目详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【题目点拨】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.10、A【解题分析】根据分段函数解析式研究的性质,并画出函数图象草图,应用数形结合及题设条件可得、、,进而将目标式转化并令,构造,则只需研究在上的范围即可.【题目详解】由分段函数知:时且递减;时且递增;时,且递减;时,且递增;∴的图象如下:有四个实数根,,,且,由图知:时有四个实数根,且,又,由对数函数的性质:,可得,∴令,且,由在上单增,可知,所以故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出无论实数k取何值,直线kx-y+2+2k=0恒过定点【题目详解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程组,得∴无论实数k取何值,直线kx-y+2+2k=0恒过定点故答案为:12、##225【解题分析】利用基本不等式中“1”的妙用即可求解.【题目详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.13、2【解题分析】根据函数的单调性及零点存在定理即得.【题目详解】∵函数,函数在上单调递增,又,∴,即.故答案为:2.14、【解题分析】由条件可得函数的单调性,结合,分和利用单调性可解.【题目详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:15、【解题分析】由题意得,,又因为,则的取值范围是16、【解题分析】由已知有,解得,即函数的定义域为,又是开口向下的二次函数,对称轴,所以的单调递增区间为,又因为函数以2为底的对数型函数,是增函数,所以函数的递增区间为点睛:本题主要考查复合函数的单调区间,属于易错题.在求对数型函数的单调区间时,一定要注意定义域三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由两边平方可得,利用同角关系;(2)由(1)可知从而.【题目详解】(1)∵.∴,即,(2)由(1)知<0,又∴∴【题目点拨】本题考查三角函数化简求值,涉及同角三角函数基本关系和整体代入的思想,属于中档题18、(I);(II).【解题分析】利用有理数指数幂,根式的运算性质及对数的运算性质对(Ⅰ)、(Ⅱ)、逐个运算即可.【题目详解】(Ⅰ)+()2+(-)0==2-3+2-2+1==;(Ⅱ)log327+lg25+1g4+log42==3+2lg5+2lg2+=3+2+=.【题目点拨】本题考查有理数指数幂,根式及对数的运算性质的化简求值,熟练掌握运算性质是关键,考查运算能力,属于基础题.19、(1)证明见解析;(2);(3)2,.【解题分析】(1)由,得到,根据,即可求解;(2)由,整理得,即可求得表达式;(3)由(2)知,结合基本不等式,求得的最小值,再利用向量的夹角公式,即可求解.【题目详解】(1)在中,,可得,所以,所以.(2)由,可得,即,整理得,所以(3)由(2)知,因为为正实数,则,当且仅当时,即时,等号成立,所以的最小值为2,即,此时,因为,可得,又因为,此时为等边三角形,所以【题目点拨】求平面向量的模的2种方法:1、利用及,把向量模的运算转化为数量积的运算;2、利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.20、(1)定义域为;奇函数;(2)时,;时,.【解题分析】(1)由对数的真数大于0,解不等式可得定义域;运用奇偶性的定义,即可得到结论;(2)对a讨论,,,结合对数函数的单调性,以及参数分离法,二次函数的最值求法,可得m的范围【题目详解】(1)由题意,函数,由,可得或,即定义域为;由,即有,可得为奇函数;2对于,恒成立,可得当时,,由可得的最小值,由,可得时,y取得最小值8,则,当时,,由可得的最大值,由,可得时,y取得最大值,则,综上可得,时,;时,【题目点拨】本题主要考查了函数的奇偶性的判定,以及对数的运算性质和二次函数的图象与性质的应用,其中解答中熟记函数的奇偶性的定义,以及对数的运算性质和二次函数的图象与性质的合理应用是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,试题有一定的综合性,属于中档试题.21、(1);(2)【解题分析】(1)由奇函数得到,再由多项式相等可得;(2)由是奇函数和已知得到,再利用是上的单调增函数得到对任意恒成立.利用参数分离得对任意恒成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论