2024届北京市西城区鲁迅中学高一上数学期末联考模拟试题含解析_第1页
2024届北京市西城区鲁迅中学高一上数学期末联考模拟试题含解析_第2页
2024届北京市西城区鲁迅中学高一上数学期末联考模拟试题含解析_第3页
2024届北京市西城区鲁迅中学高一上数学期末联考模拟试题含解析_第4页
2024届北京市西城区鲁迅中学高一上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市西城区鲁迅中学高一上数学期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数的图象,只需将函数的图象向()平移()个单位长度A.左 B.右C.左 D.右2.设,则等于()A. B.C. D.3.若,,,则有A. B.C. D.4.已知函数,且在上的最大值为,若函数有四个不同的零点,则实数a的取值范围为()A. B.C. D.5.若集合,则集合()A. B.C. D.6.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.7.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为()A.1,25 B.1,20C.3,20 D.3,258.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是A. B.C. D.9.已知函数,且,则A. B.C. D.10.设a>0,b>0,化简的结果是()A. B.C. D.-3a二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线,直线若,则______________12.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)13.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度.每户每月用电量电价不超过210度的部分0.5元/度超过210度但不超过400度的部分0.6元/度超过400度的部分0.8元/度14.若,,则以、为根的一元二次方程可以是___________.(写出满足条件的一个一元二次方程即可)15.在单位圆中,已知角的终边与单位圆的交点为,则______16.,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数.(1)若,且,求函数的解析式;(2)若函数在上是增函数,且,求实数的取值范围.18.如图,在三棱柱中,侧棱⊥底面,,分别为棱的中点(1)求证:;(2)若求三棱锥的体积19.已知函数f(x)=(1)求f(x)的最小正周期;(2)当x∈[-π6,20.已知正三棱柱,是的中点求证:(1)平面;(2)平面平面21.设有一条光线从射出,并且经轴上一点反射.(1)求入射光线和反射光线所在的直线方程(分别记为);(2)设动直线,当点到的距离最大时,求所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】因为,由此可得结果.【题目详解】因为,所以其图象可由向左平移个单位长度得到.故选:C.2、B【解题分析】由全集,以及与,找出与的补集,求出补集的并集即可【题目详解】,,则故选:B3、C【解题分析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【题目详解】本题正确选项:【题目点拨】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.4、B【解题分析】由在上最大值为,讨论可求出,从而,若有4个零点,则函数与有4个交点,画出图象,结合图象求解即可【题目详解】若,则函数在上单调递增,所以的最小值为,不合题意,则,要使函数在上的最大值为如果,即,则,解得,不合题意;若,即,则解得即,则如图所示,若有4个零点,则函数与有4个交点,只有函数的图象开口向上,即当与)有一个交点时,方程有一个根,得,此时函数有二个不同的零点,要使函数有四个不同的零点,与有两个交点,则抛物线的图象开口要比的图象开口大,可得,所以,即实数a的取值范围为故选:B【题目点拨】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出的值,然后将问题转化为函数与有4个交点,画出函数图象,结合图象求解即可,属于较难题5、D【解题分析】解方程,再求并集.【题目详解】故选:D.6、B【解题分析】求圆心角的弧度数,再由弧长公式求弧长.【题目详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.7、A【解题分析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔【题目详解】解:因为余1,所以在抽取过程中被剔除的个体数是1;抽样间隔是25故选:A8、A【解题分析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函数y=ex,y=lnx,y=2﹣x的图象如图:∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选A考点:函数的零点9、A【解题分析】,,,,.故选:A.10、D【解题分析】由分数指数幂的运算性质可得结果.【题目详解】因为,,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【题目点拨】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.12、【解题分析】由弧长公式变形可得:,代入计算即可.【题目详解】解:由题意可知:(弧度).故答案为:.13、410【解题分析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解.【题目详解】由题意,电费(元)关于用电量(度)的函数为:,即,当时,,若,,则,解得.故答案为:410.14、【解题分析】利用两数和的完全平方公式得到,再利用根与系数的关系写出一个满足条件的方程.【题目详解】因为,,所以,即该一元二次方程的两根之和为3,两根之积为2,所以以、为根的一元二次方程可以是.15、【解题分析】先由三角函数定义得,再由正切的两角差公式计算即可.【题目详解】由三角函数的定义有,而.故答案为:16、【解题分析】分和两种情况解方程,由此可得出的值.【题目详解】当时,由,解得;当时,由,解得(舍去).综上所述,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】【试题分析】(1)利用可求得的值,利用,可求得的值.(2)利用奇函数的性质,将圆不等式转化为然后利用函数的单调性列不等式来求解.【试题解析】(Ⅰ)是定义在上的奇函数,经检验成立(Ⅱ)是定义在上的奇函数且即函数在上是增函数的取值范围是18、(1)见解析;(2).【解题分析】(1)可证平面,从而得到.(2)取的中点为,连接,可证平面,故可求三棱锥的体积【题目详解】(1)因为侧棱⊥底面,平面,所以,因为为中点,,故,而,故平面,而平面,故.(2)取的中点为,连接.因为,故,故,因为,故,且,故,因为三棱柱中,侧棱⊥底面,故三棱柱为直棱柱,故⊥底面,因为底面,故,而,故平面,而,故.【题目点拨】思路点睛:线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化.又三棱锥的体积的计算需选择合适的顶点和底面,此时顶点到底面的距离容易计算.19、(1)π(2)x∈-π6,π3时,f(x)【解题分析】(1)对f(x)化简后得到fx=sin2x-π6【小问1详解】f(x)=所以f(x)的最小正周期为2【小问2详解】当x∈-π故当-π2⩽2x-π6当π2⩽2x-π6⩽当2x-π6∈所以-32⩽f(x)⩽120、(1)见解析(2)见解析【解题分析】(1)连接,交于点,连结,由棱柱的性质可得点是的中点,根据三角形中位线定理可得,利用线面平行的判定定理可得平面;(2)由正棱柱的性质可得平面,于是,再由正三角形的性质可得,根据线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结论.试题解析:(1)连接,交于点,连结,因为正三棱柱,所以侧面是平行四边形,故点是的中点,又因为是的中点,所以,又因为平面,平面,所以平面(2)因为正三棱柱,所以平面,又因为平面,所以,因为正三棱柱,是的中点,是的中点,所以,又因为,所以平面,又因为平面,所以平面平面【方法点晴】本题主要考查线面平行的判定定理、线面垂直及面面垂直的证明,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.21、(1)(2)【解题分析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论