




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省潮州市2024届高一上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则2.已知点,,则直线的倾斜角为()A. B.C. D.3.已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为()A. B.C. D.4.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.5.若函数的定义域是,则函数的定义域是()A. B.C. D.6.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.7.若角满足条件,且,则在A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知直线的方程为,则该直线的倾斜角为A. B.C. D.9.已知,则等于()A. B.C. D.10.已知、是方程两个根,且、,则的值是()A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.的值为______12.不等式的解集是______13.如图,在中,,,若,则_____.14.已知,,且,则的最小值为______15.已知命题“,”是真命题,则实数的取值范围为__________16.已知圆心为,且被直线截得的弦长为,则圆的方程为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(a>0且a≠1).(1)若f(x)在[-1,1]上的最大值与最小值之差为,求实数a的值;(2)若,当a>1时,解不等式.18.已知函数,.(1)求函数图象的对称轴的方程;(2)当时,求函数的值域;(3)设,存在集合,当且仅当实数,且在时,不等式恒成立.若在(2)的条件下,恒有(其中),求实数的取值范围.19.已知函数(1)判断函数f(x)的单调性,并用定义给出证明;(2)解不等式:;(3)若关于x方程只有一个实根,求实数m的取值范围20.三角形ABC的三个顶点A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上高线AD所在直线的方程21.已知函数,若函数的图象过点,(1)求的值;(2)若,求实数的取值范围;(3)若函数有两个零点,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用不等式性质逐一判断即可.【题目详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【题目点拨】本题考查了利用不等式性质判断大小,属于基础题.2、B【解题分析】由两点求斜率公式可得AB所在直线当斜率,再由斜率等于倾斜角的正切值求解【题目详解】解:∵直线过点,,∴,设AB的倾斜角为α(0°≤α<180°),则tanα=1,即α=45°故选B【题目点拨】本题考查直线的倾斜角,考查直线倾斜角与斜率的关系,是基础题3、B【解题分析】根据给定条件,探讨函数的性质,再把不等式等价转化,利用的性质求解作答.【题目详解】因为定义在上的偶函数,则,即是R上的偶函数,又在上单调递增,则在上单调递减,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故选:B4、C【解题分析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【题目详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.5、C【解题分析】由题可列出,可求出【题目详解】的定义域是,在中,,解得,故的定义域为.故选:C.6、A【解题分析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【题目详解】设函数在上是增函数,解得故选:A【题目点拨】本题主要考查了由复合函数的单调性求参数范围,属于中档题.7、B【解题分析】因为,所以在第二或第四象限,且,所以在第二象限考点:三角函数的符号8、B【解题分析】直线的斜率,其倾斜角为.考点:直线的倾斜角.9、A【解题分析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【题目详解】设,则,则,则,故选:10、B【解题分析】先用根与系数的关系可得+=,=4,从而可得<0,<0,进而,所以,然后求的值,从而可求出的值.【题目详解】由题意得+=,=4,所以,又、,故,所以,又.所以.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】直接利用对数的运算法则和指数幂的运算法则求解即可【题目详解】12、【解题分析】先利用指数函数的单调性得,再解一元二次不等式即可【题目详解】故答案为【题目点拨】本题考查了指数不等式和一元二次不等式的解法,属中档题13、【解题分析】根据平面向量基本定理,结合向量加法、减法法则,将向量、作为基向量,把向量表示出来,即可求出.【题目详解】即:【题目点拨】本题考查平面向量基本定理的应用问题,解题时根据向量加法与减法法则将所求向量用题目选定的基向量表示出来,是基础题目.14、6【解题分析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【题目详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.15、【解题分析】此题实质上是二次不等式的恒成立问题,因为,函数的图象抛物线开口向上,所以只要判别式不大于0即可【题目详解】解:因为命题“,”是真命题,所以不等式在上恒成立由函数的图象是一条开口向上的抛物线可知,判别式即解得所以实数的取值范围是故答案为:【题目点拨】本题主要考查全称命题或存在性命题的真假及应用,解题要注意的范围,如果,一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出的范围.本题是一道基础题16、【解题分析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=25三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2或;(2)或.【解题分析】(1)对a值分类讨论,根据单调性列出最值之差表达式即可求解;(2)由函数的奇偶性、单调性脱去给定不等式中的法则“”,转化为一元二次不等式,求解即得.【题目详解】(1)①当,f(x)在[-1,1]上单调递增,,解得,②当时,f(x)在[-1,1]上单调递减,,解得,综上可得,实数a的值为2或.(2)由题可得定义域为,且,所以为上的奇函数;又因为,且,所以在上单调递增;所以,或,所以不等式的解集为或.【题目点拨】解抽象的函数不等式,分析对应函数的奇偶性和单调性是解决问题的关键.18、(1);(2);(3).【解题分析】(1)利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的对称性得解;(2)令,换元,化函数为的二次函数,求出,由此可值域;(3)由题意利用分离参数法、换元法、基本不等式先求出集合,根据(2)中范围得出的范围,再由可得的范围【题目详解】解:(1)令,得所以函数图象的对称轴方程为:(2)由(1)知,,当时,,∴,,即令,则,,由得,∴当时,有最小值,当时,有最大值1,所以当时,函数的值域为(3)当,不等式恒成立,因为时,,,所以,令,则,所以又,当且仅当即时取等号而,所以,即,所以又由(2)知,,当时,,所以,要使恒成立,只须使,故的取值范围是【题目点拨】关键点点睛:本题考查两角和的正弦公式,三角函数的对称性,换元法求三角函数的值域,考查不等式恒成立问题,在同时出现和的函数中常常设换元转化为二次函数,再结合二次函数性质求解.不等式恒成立问题仍然采用分离参数转化为求函数的最值19、(1)f(x)在R上单调递增;证明见解析;(2);(3){-3}(1,+∞).【解题分析】(1)利用函数单调性的定义及指数函数的性质即得;(2)由题可得,然后利用函数单调性即得;(3)由题可得方程有且只有一个正数根,分m=1,m≠1讨论,利用二次函数的性质可得.【小问1详解】f(x)在R上单调递增;任取x1,x2∈R,且x1<x2,则∵∴,∴即∴函数f(x)在R上单调递增【小问2详解】∵,∵,∴,又∵函数f(x)在R上单调递增,∴,∴不等式的解集为【小问3详解】由可得,,即,此方程有且只有一个实数解令,则t>0,问题转化为:方程有且只有一个正数根①当m=1时,,不合题意,②当m≠1时,(i)若△=0,则m=-3或,若m=-3,则,符合题意;若,则t=-2,不合题意,(ii)若△>0,则m<-3或,由题意,方程有一个正根和一个负根,即,解得m>1综上,实数m的取值范围是{-3}(1,+∞)20、(1)x+2y-4=0(2)2x-y+6=0【解题分析】(1)直接根据两点式公式写出直线方程即可;(2)先根据直线的垂直关系求出高线的斜率,代入点斜式方程即可【题目详解】(1)BC边所在直线的方程为:=,即x+2y-4=0;(2)∵BC的斜率K1=-,∴BC边上的高AD的斜率K=2,∴BC边上的高线AD所在直线的方程为:y=2(x+3),即2x-y+6=0【题目点拨】此题考查了中点坐标公式以及利用两点式求直线方程的方法,属于基础题21、(1).(2).(3).【解题分析】(1)由函数过点,代入函数即可得的值;(2)由可得的取值范围;(3)由函数的大致图象即可得的取值范围.试题解析:(1),,,.(2),,.(3)当时,是减函数,值域为.偶函数,时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司行政药品管理制度
- 2025商场租赁合同样本
- 广东省东莞市2024~2025学年 高二下册第一次月考数学试卷附解析
- 2025年中考语文(长沙用)课件:复习任务群6 文学、文化常识
- 中国共产党执政:历史和人民的选择教学课件
- 2024年四川公务员行测(B类)真题及答案
- 志 委托编纂协议
- 2025年医药储运部试题
- 超声激励下生物组织热与应力损伤的研究
- 艺术品鉴定技术创新-洞察阐释
- 2024-2025学年天津市八年级下期末数学模拟试卷(附答案解析)
- 2025年继续教育公需科目网络考试试题及答案
- 油漆工包工合同协议书
- 2025高考终极押题范文6篇与题目
- 工程项目经理竞聘演讲稿
- 基于“学-教-评”一体化理念下的高中古诗词教学策略研究
- 统编版(2024)七年级下册历史期末专题复习课件40张
- 上海上海市普陀区融媒体中心专业技术人员招聘笔试历年参考题库附带答案详解
- 机械通气患者护理
- 危险源辨识及风险评价表
- 医疗数据驱动的数字化转型路径
评论
0/150
提交评论