版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省江阴四校高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数(,),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是()A. B.C. D.2.已知,,,则a、b、c的大小顺序为()A. B.C. D.3.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,)A.0.021 B.0.221C.0.461 D.0.6614.已知点在第二象限,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.如果直线和函数的图象恒过同一个定点,且该定点始终落在圆的内部或圆上,那么的取值范围是()A. B.C. D.6.已知角的终边经过点,则A. B.C.-2 D.7.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则8.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.9.已知向量,,,若,,则()A. B.C. D.10.函数的单调递减区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的单调增区间为________.12.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.13.设函数,则下列结论①的图象关于直线对称②的图象关于点对称③的图象向左平移个单位,得到一个偶函数的图象④的最小正周期为,且在上为增函数其中正确的序号为________.(填上所有正确结论的序号)14.幂函数的图象经过点,则________15.已知幂函数(是常数)的图象经过点,那么________16.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦矢+).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于9m的弧田.按照上述经验公式计算所得弧田的面积是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,或,(Ⅰ)求;(Ⅱ)求18.已知圆的一般方程为.(1)求的取值范围;(2)若圆与直线相交于两点,且(为坐标原点),求以为直径的圆的方程.19.若关于x的不等式的解集为(1)当时,求的值;(2)若,求的值及的最小值20.已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)求关于的不等式的解集.21.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由已知得,,且,解之讨论k,可得选项.【题目详解】因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除A,B;又,且,解得,当时,不满足,当时,符合题意,当时,符合题意,当时,不满足,故C正确,D不正确,故选:C.【题目点拨】关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项.2、D【解题分析】由对数的运算性质可判断出,而由已知可得,从而可判断出,进而可比较大小详解】由,故,因为,所以,因为,所以,所以,即故选:D3、A【解题分析】由题意得出,再取对数得出k的值.【题目详解】由题意可知,所以,解得故选:A4、C【解题分析】利用任意角的三角函数的定义,三角函数在各个象限中的负号,求得角α所在的象限【题目详解】解:∵点P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α顶点为坐标原点,始边为x轴的非负半轴,则α的终边落在第三象限,故选:C5、C【解题分析】由已知可得.再由由点在圆内部或圆上可得.由此可解得点在以和为端点的线段上运动.由表示以和为端点的线段上的点与坐标原点连线的斜率可得选项【题目详解】函数恒过定点.将点代入直线可得,即由点在圆内部或圆上可得,即.或.所以点在以和为端点的线段上运动表示以和为端点的线段上的点与坐标原点连线的斜率.所以,.所以故选:C【题目点拨】关键点点睛:解决本题类型的问题,关键在于由已知条件得出所满足的可行域,以及明确所表示的几何意义.6、B【解题分析】按三角函数的定义,有.7、D【解题分析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.8、D【解题分析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【题目详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D9、C【解题分析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【题目详解】向量,,,又且,,解得.故选:C.【题目点拨】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.10、B【解题分析】是增函数,只要求在定义域内的减区间即可【题目详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【题目点拨】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求出给定函数的定义域,由对数函数、正弦函数单调性结合复合函数单调性求解作答.【题目详解】依题意,,则,解得,函数中,由得,即函数在上单调递增,当时,函数在上单调递增,又函数在上单调递增,所以函数的单调增区间为.故答案为:【题目点拨】关键点睛:函数的单调区间是定义域的子区间,求函数的单调区间,正确求出函数的定义域是解决问题的关键.12、【解题分析】设参加数学、物理、化学小组的同学组成的集合分别为,、,根据容斥原理可求出结果.【题目详解】设参加数学、物理、化学小组的同学组成的集合分别为,、,同时参加数学和化学小组的人数为,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为,如图所示:由图可知:,解得,所以同时参加数学和化学小组有人.故答案为:.13、③【解题分析】利用正弦型函数的对称性判断①②的正误,利用平移变换判断③的正误,利用周期性与单调性判断④的正误.【题目详解】解:对于①,因为f()=sinπ=0,所以不是对称轴,故①错;对于②,因为f()=sin,所以点不是对称中心,故②错;对于③,将把f(x)的图象向左平移个单位,得到的函数为y=sin[2(x)]=sin(2x)=cos2x,所以得到一个偶函数的图象;对于④,因为若x∈[0,],则,所以f(x)在[0,]上不单调,故④错;故正确的结论是③故答案为③【题目点拨】此题考查了正弦函数的对称性、三角函数平移的规律、整体角处理的方法,正弦函数的图象与性质是解本题的关键三、14、【解题分析】设幂函数的解析式,然后代入求解析式,计算.【题目详解】设,则,解得,所以,得故答案为:15、【解题分析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;【题目详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;故答案:16、.【解题分析】如下图所示,在中,求出半径,即可求出结论.【题目详解】设弧田的圆心为,弦为,为中点,连交弧为,则,所以矢长为,在中,,,所以,,所以弧田的面积为.故答案为:.【题目点拨】本题以数学文化为背景,考查直角三角形的边角关系,认真审题是解题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据交集直接能算;(2)根据补集、并集运算求解.【题目详解】(1)因为,或,所以(2)由或,知,所以.18、(1);(2)【解题分析】(1)根据圆的一般方程成立条件,,代入即可求解;(2)联立直线方程和圆的方程,消元得关于的一元二次方程,列出韦达定理,求解中点坐标为圆心,为半径,即可求解圆的方程.【题目详解】(1),,,,,解得:(2),将代入得,,,,半径∴圆的方程为【题目点拨】(1)考查圆的一般方程成立条件,属于基础题;(2)考查直线与圆位置关系,联立方程组法求解,结合一元二次方程韦达定理,综合性较强,难度一般.19、(1);(2);.【解题分析】(1)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、根的判别式进行求解即可;(2)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、基本不等式进行求解即可.【小问1详解】由题可知关于x的方程有两个根,所以故【小问2详解】由题意关于x的方程有两个正根,所以有解得;同时,由得,所以,由于,所以,当且仅当,即,且,解得时取得“=”,此时实数符合条件,故,且当时,取得最小值20、(1);(2)答案见解析.【解题分析】(1)根据二次函数图象的性质确定参数a的取值区间;(2)确定方程的根或,讨论两根的大小关系得出不等式的解集.【题目详解】(1)因为函数的图象为开口向上的抛物线,其对称轴为直线由二次函数图象可知,的单调增区间为因为在上单调递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度肉牛购销合同范本范文:肉牛产业技术创新战略联盟合作协议2篇
- 全新中药材市场推广合同
- 2024年度软件开发合同范本2篇
- 2024年度个人购房装修权益合同协议2篇
- 2024年度网络安全技术培训与咨询服务合同3篇
- 2024年度人工智能算法优化与服务合同2篇
- 二零二四年度文化创意产业孵化基地建设合同3篇
- 2024年度技术转让合同专利技术的全套转移与使用权3篇
- 2024年度软件分销与市场推广合同2篇
- 2024年度环保设施施工及运行调试合同2篇
- 2024年糖尿病指南解读
- 静脉治疗专科护士的分享课件
- 二十届三中全会精神知识竞赛试题及答案
- 中国农业文化遗产与生态智慧智慧树知到期末考试答案章节答案2024年浙江农林大学
- 人教版小学数学六年级上册《百分数》单元作业设计
- 增值税预缴税款表电子版
- 脑干梗死患者疑难病例讨论
- 爱立信BSC硬件介绍
- 工程监理工作联系单(范本)范本
- 管理学案例分析之健力宝案例
- 关于利益冲突政策的规定
评论
0/150
提交评论